IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024993.html
   My bibliography  Save this article

Benzene conversion using a partial combustion approach in a packed bed reactor

Author

Listed:
  • Ahmad, Waqar
  • Lin, Leteng
  • Strand, Michael

Abstract

This study investigates the partial combustion technique for tar conversion using a modified experimental set up comprising a packed bed reactor with bed-inside probe for air supply. Simulated producer gas (SPG) and benzene were selected as a real producer gas alternative and model tar component respectively. The benzene conversion was investigated under different experimental conditions such as reactor temperature (650–900 °C), packed bed height (0–12 cm), residence time (1.2–1.9 s), air fuel ratio (0.2 and 0.3) and SPG composition. The results showed insignificant effect of temperature over benzene conversion while air fuel ratio of 0.3 caused high benzene conversion than at 0.2. Absence of packed bed lead high benzene conversion of 90% to polyaromatic hydrocarbons (PAHs) compared to similar low PAHs free benzene conversion of 32% achieved at both packed heights. In SPG composition effect, H2 and CH4 had a substantial inverse effect on benzene conversion. An increase in H2 concentration from 12 to 24 vol% increased the benzene conversion from 26 to 45% while an increase in CH4 concentration from 7 to 14 vol% reduced the benzene conversion from 28 to 4%. However, other SPG components had insignificant impacts on benzene conversion.

Suggested Citation

  • Ahmad, Waqar & Lin, Leteng & Strand, Michael, 2022. "Benzene conversion using a partial combustion approach in a packed bed reactor," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024993
    DOI: 10.1016/j.energy.2021.122251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shuping & Yin, Haoxin & Wang, Jiaxing & Zhu, Shuguang & Xiong, Yuanquan, 2021. "Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    2. Li, Xueqin & Liu, Peng & Lei, Tingzhou & Wu, Youqing & Chen, Wenxuan & Wang, Zhiwei & Shi, Jie & Wu, Shiyong & Li, Yanling & Huang, Sheng, 2022. "Pyrolysis of biomass Tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation," Energy, Elsevier, vol. 244(PB).
    3. Lin, Qunqing & Zhang, Shuping & Wang, Jiaxing & Yin, Haoxin, 2021. "Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar," Renewable Energy, Elsevier, vol. 174(C), pages 188-198.
    4. E, Shuang & Jin, Caidi & Liu, Jianglong & Yang, Luhan & Yang, Ming & Xu, Enbo & Wang, Kaiying & Sheng, Kuichuan & Zhang, Ximing, 2022. "Engineering functional hydrochar based catalyst with corn stover and model components for efficient glucose isomerization," Energy, Elsevier, vol. 249(C).
    5. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    6. Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
    7. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.