IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221001420.html
   My bibliography  Save this article

Considerations on factors affecting biochar densification behavior based on a multiparameter model

Author

Listed:
  • Riva, Lorenzo
  • Wang, Liang
  • Ravenni, Giulia
  • Bartocci, Pietro
  • Buø, Therese Videm
  • Skreiberg, Øyvind
  • Fantozzi, Francesco
  • Nielsen, Henrik Kofoed

Abstract

The optimization of upscaled biochar pelleting is limited by lack of knowledge regarding the effects of process parameters. A multiparameter model, coupled to a single pellet press unit, was for the first time applied to biochar production to predict the upscaled biochar pelleting process behavior. The model permits to estimate in a time and cost-effective way how the die friction forces, quantified through the pellet exiting pressure, are affected by the key process parameters. It was observed that to achieve acceptably low exiting pressures (in the order of 100 MPa), it was critical to produce biochar at high temperatures (e.g. 600 °C). Addition of water as a binder is also beneficial, while pelletization temperature does not significantly affect the exiting pressure. Furthermore, when pyrolysis oil was used as a binder, lower exiting pressures were measured. Biochar returned higher exiting pressure values compared with untreated wood, but lower compared with torrefied wood. Moreover, the correlation between density and compressive strength was also examined. It was found that the exiting pressure trend is a good indicator to estimate the mechanical quality of the pellets.

Suggested Citation

  • Riva, Lorenzo & Wang, Liang & Ravenni, Giulia & Bartocci, Pietro & Buø, Therese Videm & Skreiberg, Øyvind & Fantozzi, Francesco & Nielsen, Henrik Kofoed, 2021. "Considerations on factors affecting biochar densification behavior based on a multiparameter model," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001420
    DOI: 10.1016/j.energy.2021.119893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221001420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    3. Kang, Kang & Zhu, Mingqiang & Sun, Guotao & Qiu, Ling & Guo, Xiaohui & Meda, Venkatesh & Sun, Runcang, 2018. "Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study," Applied Energy, Elsevier, vol. 223(C), pages 347-357.
    4. Huang, Chao-Wei & Li, Yueh-Heng & Xiao, Kai-Lin & Lasek, Janusz, 2019. "Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes," Energy, Elsevier, vol. 172(C), pages 566-579.
    5. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    2. Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    2. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    3. Riva, Lorenzo & Surup, Gerrit Ralf & Buø, Therese Videm & Nielsen, Henrik Kofoed, 2019. "A study of densified biochar as carbon source in the silicon and ferrosilicon production," Energy, Elsevier, vol. 181(C), pages 985-996.
    4. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    5. Yu-Chiao Lu & Liviu Brabie & Andrey V. Karasev & Chuan Wang, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    6. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    7. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    8. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    9. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    10. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    11. Wioletta Żukiewicz-Sobczak & Agnieszka Latawiec & Paweł Sobczak & Bernardo Strassburg & Dorota Plewik & Małgorzata Tokarska-Rodak, 2020. "Biochars Originating from Different Biomass and Pyrolysis Process Reveal to Have Different Microbial Characterization: Implications for Practice," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    12. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    13. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    14. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    15. Surup, Gerrit Ralf & Hunt, Andrew J. & Attard, Thomas & Budarin, Vitaliy L. & Forsberg, Fredrik & Arshadi, Mehrdad & Abdelsayed, Victor & Shekhawat, Dushyant & Trubetskaya, Anna, 2020. "The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries," Energy, Elsevier, vol. 193(C).
    16. Jung-Kyu Lee & Dongho Hong & Hyunkyu Chae & Dong-Hoon Lee, 2023. "Prediction of Storage Conditions to Increase the Bioenergy Efficiency of Giant Miscanthus Pellets Produced through On-Site Integrated Pretreatment Machines," Energies, MDPI, vol. 16(5), pages 1-14, March.
    17. Shui, Tao & Khatri, Vinay & Chae, Michael & Sokhansanj, Shahabaddine & Choi, Phillip & Bressler, David C., 2020. "Development of a torrefied wood pellet binder from the cross-linking between specified risk materials-derived peptides and epoxidized poly (vinyl alcohol)," Renewable Energy, Elsevier, vol. 162(C), pages 71-80.
    18. Joanna Wnorowska & Szymon Ciukaj & Sylwester Kalisz, 2021. "Thermogravimetric Analysis of Solid Biofuels with Additive under Air Atmosphere," Energies, MDPI, vol. 14(8), pages 1-19, April.
    19. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    20. Bo Wang & Jie Yu & Hui Liao & Wenkun Zhu & Pingping Ding & Jian Zhou, 2020. "Adsorption of Lead (II) from Aqueous Solution with High Efficiency by Hydrothermal Biochar Derived from Honey," IJERPH, MDPI, vol. 17(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.