IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v75y2015icp524-533.html
   My bibliography  Save this article

Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain

Author

Listed:
  • Peci López, F.
  • Ruiz de Adana Santiago, M.

Abstract

Energy efficient buildings need to take advantage of any renewable energy available. An opaque ventilated façade (OVF) is a kind of façade that absorbs solar energy and transfers it to the ventilation system. This way, the sensible ventilation load of the heating system can be reduced in the winter season. The energy saving of this system depends strongly on the weather variables, mainly solar radiation on the façade, ambient temperature and wind speed. In order to find the most convenient locations where the best OVF efficiency can be obtained, its performance has to be studied along a complete season. For this purpose in this study a sensitivity analysis with the most important weather variables was carried out and the energy saving values in 12 locations in Spain in the winter were evaluated using a numerical model previously validated with experimental data. The results showed that although the most influential weather variable was solar radiation, a combination of high temperatures and low wind speeds can also lead to important energy saving values. It was found that the most convenient locations for installing an OVF were those with low and medium winter severity climates, namely, in the southern and coastal regions of Spain (zones A3, B3, B4, C3 and C4).

Suggested Citation

  • Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.
  • Handle: RePEc:eee:renene:v:75:y:2015:i:c:p:524-533
    DOI: 10.1016/j.renene.2014.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114006582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holmes, M.J., 1994. "Optimisation of the thermal performance of mechanically and naturally ventilated glazed facades," Renewable Energy, Elsevier, vol. 5(5), pages 1091-1098.
    2. Zamora, B. & Kaiser, A.S., 2010. "Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation," Renewable Energy, Elsevier, vol. 35(9), pages 2080-2088.
    3. Shukla, Ashish & Nkwetta, Dan Nchelatebe & Cho, Y.J. & Stevenson, Vicki & Jones, Phil, 2012. "A state of art review on the performance of transpired solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3975-3985.
    4. Hollick, J.C., 1994. "Unglazed solar wall air heaters," Renewable Energy, Elsevier, vol. 5(1), pages 415-421.
    5. Zogou, Olympia & Stapountzis, Herricos, 2011. "Experimental validation of an improved concept of building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 36(12), pages 3488-3498.
    6. Stazi, F. & Tomassoni, F. & Vegliò, A. & Di Perna, C., 2011. "Experimental evaluation of ventilated walls with an external clay cladding," Renewable Energy, Elsevier, vol. 36(12), pages 3373-3385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apostolos Arsenopoulos & Vangelis Marinakis & Konstantinos Koasidis & Andriana Stavrakaki & John Psarras, 2020. "Assessing Resilience to Energy Poverty in Europe through a Multi-Criteria Analysis Framework," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    2. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    3. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.
    4. Ikram Merini & Angel Molina-García & M. Socorro García-Cascales & Mustapha Mahdaoui & Mohamed Ahachad, 2020. "Analysis and Comparison of Energy Efficiency Code Requirements for Buildings: A Morocco–Spain Case Study," Energies, MDPI, vol. 13(22), pages 1-21, November.
    5. Huang, Baofeng & Wang, Yeqing & Lu, Wensheng & Cheng, Meng, 2022. "Fabrication and energy efficiency of translucent concrete panel for building envelope," Energy, Elsevier, vol. 248(C).
    6. Ibañez-Puy, María & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio & Martín-Gómez, César, 2017. "Opaque Ventilated Façades: Thermal and energy performance review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 180-191.
    7. María Nuria Sánchez & Emanuela Giancola & Eduardo Blanco & Silvia Soutullo & María José Suárez, 2019. "Experimental Validation of a Numerical Model of a Ventilated Façade with Horizontal and Vertical Open Joints," Energies, MDPI, vol. 13(1), pages 1-16, December.
    8. Sánchez, M.N. & Giancola, E. & Suárez, M.J. & Blanco, E. & Heras, M.R., 2017. "Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV," Renewable Energy, Elsevier, vol. 109(C), pages 613-623.
    9. Silvia Soutullo & Emanuela Giancola & María Nuria Sánchez & José Antonio Ferrer & David García & María José Súarez & Jesús Ignacio Prieto & Elena Antuña-Yudego & Juan Luís Carús & Miguel Ángel Fernánd, 2020. "Methodology for Quantifying the Energy Saving Potentials Combining Building Retrofitting, Solar Thermal Energy and Geothermal Resources," Energies, MDPI, vol. 13(22), pages 1-25, November.
    10. El Asri, Najat & Nouira, Youness & Maaroufi, Ibtissam & Marfak, Abdelghafour & Saleh, Nour & Mharzi, Mohammed, 2022. "The policy of energy management in public buildings procurements through the study of the process of delegated project management - Case of Morocco," Energy Policy, Elsevier, vol. 165(C).
    11. Diallo, Thierno M.O. & Zhao, Xudong & Dugue, Antoine & Bonnamy, Paul & Javier Miguel, Francisco & Martinez, Asier & Theodosiou, Theodoros & Liu, Jing-Sheng & Brown, Nathan, 2017. "Numerical investigation of the energy performance of an Opaque Ventilated Façade system employing a smart modular heat recovery unit and a latent heat thermal energy system," Applied Energy, Elsevier, vol. 205(C), pages 130-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez, M.N. & Giancola, E. & Suárez, M.J. & Blanco, E. & Heras, M.R., 2017. "Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV," Renewable Energy, Elsevier, vol. 109(C), pages 613-623.
    2. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Ibañez-Puy, María & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio & Martín-Gómez, César, 2017. "Opaque Ventilated Façades: Thermal and energy performance review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 180-191.
    4. Peci, F. & Comino, F. & Ruiz de Adana, M., 2018. "Performance of an unglazed transpire collector in the facade of a building for heating and cooling in combination with a desiccant evaporative cooler," Renewable Energy, Elsevier, vol. 122(C), pages 460-471.
    5. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    6. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    7. Stefan Owczarek & Mariusz Owczarek, 2020. "Heat Transport Analysis in Rectangular Shields Using the Laplace and Poisson Equations," Energies, MDPI, vol. 13(7), pages 1-20, April.
    8. Zheng, Wandong & Li, Bojia & Zhang, Huan & You, Shijun & Li, Ying & Ye, Tianzhen, 2016. "Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions," Energy, Elsevier, vol. 109(C), pages 781-790.
    9. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
    10. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
    11. Camila Gregório-Atem & Carolina Aparicio-Fernández & Helena Coch & José-Luis Vivancos, 2020. "Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    12. Roumpakias, Elias & Zogou, Olympia & Stamatelos, Anastassios, 2015. "Correlation of actual efficiency of photovoltaic panels with air mass," Renewable Energy, Elsevier, vol. 74(C), pages 70-77.
    13. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    14. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    15. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    16. Paya-Marin, Miguel A. & Roy, Krishanu & Chen, Jian-Fei & Masood, Rehan & Lawson, R. Mark & Gupta, Bhaskar Sen & Lim, James B.P., 2020. "Large-scale experiment of a novel non-domestic building using BPSC systems for energy saving," Renewable Energy, Elsevier, vol. 152(C), pages 799-811.
    17. Zukowski, M., 2015. "Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater," Applied Energy, Elsevier, vol. 142(C), pages 10-20.
    18. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    19. Gholampour, Maysam & Ameri, Mehran, 2016. "Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study," Applied Energy, Elsevier, vol. 164(C), pages 837-856.
    20. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:75:y:2015:i:c:p:524-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.