IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222004108.html
   My bibliography  Save this article

Effect of Ce in Ni10Cex/γ-Al2O3 for the in situ hydrodeoxidation of Tetra Pak bio-oil during hydrothermal liquefaction

Author

Listed:
  • Wang, Yuzhen
  • Wang, Ying
  • Fang, Changqing
  • Zheng, Xing
  • Xu, Donghai

Abstract

Ni10Cex/γ-Al2O3 catalysts with different Ce loading were prepared by co-impregnation method. The effects of catalysts on the hydrothermal liquefaction of Tetra Pak at 360 °C, 20 MPa and 30 min were systematically investigated. The results showed that the main crystal planes of the catalysts were mainly NiO and CeO2. The interactions between Ni and Ce facilitate the dispersion of NiO and CeO2, and the highest proportion of oxygen vacancies was found with 5 wt% Ce loading, which acted as active sites for activation the C–O bonds in oxygenated group. However, the crystal particles began to agglomerate when the Ce loading was 7 wt%. The maximum bio-oil yield of 35.53 wt% was obtained with Ni10Ce5/γ-Al2O3. In addition, the O content decreased from 22.04% without catalyst to 4.31% with Ni10Ce5/γ-Al2O3 catalyst. The order of the catalytic activity was Ni10Ce5/γ-Al2O3 > Ni10Ce7/γ-Al2O3 > Ni10Ce3/γ-Al2O3 > Ni10Ce1/γ-Al2O3, which was consistent with that of the concentration of oxygen vacancies in catalysts. The main components of bio-oil were hydrocarbons, ketones and esters. Hydrocarbons dramatically increased while ketones gradually decreased with the increasing Ce doping, which was mainly because of the promoted decarbonylation, cracking and aromatization reactions. The possible catalytic mechanism of Ni10Cex/γ-Al2O3 on Tetra Pak hydrothermal liquefaction was proposed.

Suggested Citation

  • Wang, Yuzhen & Wang, Ying & Fang, Changqing & Zheng, Xing & Xu, Donghai, 2022. "Effect of Ce in Ni10Cex/γ-Al2O3 for the in situ hydrodeoxidation of Tetra Pak bio-oil during hydrothermal liquefaction," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004108
    DOI: 10.1016/j.energy.2022.123507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Caixia & Zhou, Guilin & Chen, Shuang & Xie, Hongmei & Zhang, Xianming, 2020. "Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate," Renewable Energy, Elsevier, vol. 153(C), pages 1439-1454.
    2. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
    3. Baskoro Lokahita, & Muhammad Aziz, & Yoshikawa, Kunio & Takahashi, Fumitake, 2017. "Energy and resource recovery from Tetra Pak waste using hydrothermal treatment," Applied Energy, Elsevier, vol. 207(C), pages 107-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    2. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    3. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
    5. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    6. Tao Li & Guangwei Wang & Heng Zhou & Xiaojun Ning & Cuiliu Zhang, 2022. "Numerical Simulation Study on the Effects of Co-Injection of Pulverized Coal and Hydrochar into the Blast Furnace," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    7. Prateek Saxena & Panagiotis Stavropoulos & John Kechagias & Konstantinos Salonitis, 2020. "Sustainability Assessment for Manufacturing Operations," Energies, MDPI, vol. 13(11), pages 1-19, May.
    8. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Pyrolysis of three different types of microalgae: Kinetic and evolved gas analysis," Energy, Elsevier, vol. 73(C), pages 33-43.
    9. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    10. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    11. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Prestigiacomo, Claudia & Laudicina, Vito Armando & Siragusa, Angelo & Scialdone, Onofrio & Galia, Alessandro, 2020. "Hydrothermal liquefaction of waste biomass in stirred reactors: One step forward to the integral valorization of municipal sludge," Energy, Elsevier, vol. 201(C).
    13. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    14. Wang, Yuzhen & Liu, Zhuan & Wang, Ying & Fang, Changqing & Xu, Donghai & Liu, Liang & Zheng, Xing, 2022. "Catalytic hydrothermal liquefaction of Tetra Pak with Ni-xCe/CNTs," Energy, Elsevier, vol. 261(PB).
    15. Gao, Ying & Yu, Bo & Wang, Xianhua & Yuan, Qiaoxia & Yang, Haiping & Chen, Hanping & Zhang, Shihong, 2015. "Orthogonal test design to optimize products and to characterize heavy oil via biomass hydrothermal treatment," Energy, Elsevier, vol. 88(C), pages 139-148.
    16. Huang, Hua-jun & Chang, Yan-chao & Lai, Fa-ying & Zhou, Chun-fei & Pan, Zi-qian & Xiao, Xiao-feng & Wang, Jia-xin & Zhou, Chun-huo, 2019. "Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products," Energy, Elsevier, vol. 173(C), pages 140-150.
    17. Fang, Jun & Liu, Zhuangzhuang & Luan, Hui & Liu, Fen & Yuan, Xingzhong & Long, Shundong & Wang, Andong & Ma, Yong & Xiao, Zhihua, 2021. "Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions," Renewable Energy, Elsevier, vol. 167(C), pages 32-41.
    18. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    19. Mei, Danhua & Liu, Shiyun & Wang, Sen & Zhou, Renwu & Zhou, Rusen & Fang, Zhi & Zhang, Xianhui & Cullen, Patrick J. & Ostrikov, Kostya (Ken), 2020. "Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield," Renewable Energy, Elsevier, vol. 157(C), pages 1061-1071.
    20. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222004108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.