IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2730-d364428.html
   My bibliography  Save this article

Sustainability Assessment for Manufacturing Operations

Author

Listed:
  • Prateek Saxena

    (Manufacturing Department, Cranfield University, Bedfordshire MK43 0AL, UK)

  • Panagiotis Stavropoulos

    (Laboratory for Manufacturing Systems & Automation, Department of Mechanical Engineering & Aeronautics, University of Patras, 26100 Patras, Greece)

  • John Kechagias

    (Laboratory for Machine Tools and Manufacturing Processes, General Department, University of Thessaly, 41500 Gaiopolis, Greece)

  • Konstantinos Salonitis

    (Manufacturing Department, Cranfield University, Bedfordshire MK43 0AL, UK)

Abstract

Sustainability is becoming more and more important as a decision attribute in the manufacturing environment. However, quantitative metrics for all the aspects of the triple bottom line are difficult to assess. Within the present paper, the sustainability metrics are considered in tandem with other traditional manufacturing metrics such as time, flexibility, and quality and a novel framework is presented that integrates information and requirements from Computer-Aided Technologies (CAx) systems. A novel tool is outlined for considering a number of key performance indicators related to the triple bottom line when deciding the most appropriate process route. The implemented system allows the assessment of alternative process plans considering the market demands and available resources.

Suggested Citation

  • Prateek Saxena & Panagiotis Stavropoulos & John Kechagias & Konstantinos Salonitis, 2020. "Sustainability Assessment for Manufacturing Operations," Energies, MDPI, vol. 13(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2730-:d:364428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lozano-Minguez, E. & Kolios, A.J. & Brennan, F.P., 2011. "Multi-criteria assessment of offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 36(11), pages 2831-2837.
    2. Konstantinos Salonitis & Mark Jolly & Emanuele Pagone & Michail Papanikolaou, 2019. "Life-Cycle and Energy Assessment of Automotive Component Manufacturing: The Dilemma Between Aluminum and Cast Iron," Energies, MDPI, vol. 12(13), pages 1-23, July.
    3. Baskoro Lokahita, & Muhammad Aziz, & Yoshikawa, Kunio & Takahashi, Fumitake, 2017. "Energy and resource recovery from Tetra Pak waste using hydrothermal treatment," Applied Energy, Elsevier, vol. 207(C), pages 107-113.
    4. Stambouli, A. Boudghene, 2011. "Fuel cells: The expectations for an environmental-friendly and sustainable source of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4507-4520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Salonitis, 2020. "Energy Efficiency of Manufacturing Processes and Systems—An Introduction," Energies, MDPI, vol. 13(11), pages 1-5, June.
    2. Korapin Jirapong & Karina Cagarman & Laura von Arnim, 2021. "Road to Sustainability: University–Start-Up Collaboration," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    3. Nectarios Vidakis & Markos Petousis & Lazaros Tzounis & Athena Maniadi & Emmanouil Velidakis & Nicolaos Mountakis & Dimitrios Papageorgiou & Marco Liebscher & Viktor Mechtcherine, 2020. "Sustainable Additive Manufacturing: Mechanical Response of Polypropylene over Multiple Recycling Processes," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    4. Ali Bastas, 2021. "Sustainable Manufacturing Technologies: A Systematic Review of Latest Trends and Themes," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    5. Ming Zhang & Yang Lu & Youxi Hu & Nasser Amaitik & Yuchun Xu, 2022. "Dynamic Scheduling Method for Job-Shop Manufacturing Systems by Deep Reinforcement Learning with Proximal Policy Optimization," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    6. Angad Mann & Prateek Saxena & Mohamed Almanei & Okechukwu Okorie & Konstantinos Salonitis, 2022. "Environmental Impact Assessment of Different Strategies for the Remanufacturing of User Electronics," Energies, MDPI, vol. 15(7), pages 1-17, March.
    7. Agata Sudolska & Justyna Łapińska, 2020. "Exploring Determinants of Innovation Capability in Manufacturing Companies Operating in Poland," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    8. Simon Gorecki & Jalal Possik & Gregory Zacharewicz & Yves Ducq & Nicolas Perry, 2020. "A Multicomponent Distributed Framework for Smart Production System Modeling and Simulation," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    9. Vikas Swarnakar & Amit Raj Singh & Jiju Antony & Raja Jayaraman & Anil Kr Tiwari & Rajeev Rathi & Elizabeth Cudney, 2022. "Prioritizing Indicators for Sustainability Assessment in Manufacturing Process: An Integrated Approach," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    10. Kamran Khan & Katarzyna Szopik Depczyńska & Izabela Dembińska & Giuseppe Ioppolo, 2022. "Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States," Sustainability, MDPI, vol. 14(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    2. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    3. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    5. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    6. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    7. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    8. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    9. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    10. Diemuodeke, E.O. & Addo, A. & Oko, C.O.C. & Mulugetta, Y. & Ojapah, M.M., 2019. "Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm," Renewable Energy, Elsevier, vol. 134(C), pages 461-477.
    11. Bahaj, AbuBakr S. & Mahdy, Mostafa & Alghamdi, Abdulsalam S. & Richards, David J., 2020. "New approach to determine the Importance Index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies," Renewable Energy, Elsevier, vol. 152(C), pages 441-457.
    12. Tao Li & Guangwei Wang & Heng Zhou & Xiaojun Ning & Cuiliu Zhang, 2022. "Numerical Simulation Study on the Effects of Co-Injection of Pulverized Coal and Hydrochar into the Blast Furnace," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    13. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    14. Hooper, Tara & Austen, Melanie, 2013. "Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 289-298.
    15. Shi, Wei & Han, Jonghoon & Kim, Changwan & Lee, Daeyong & Shin, Hyunkyoung & Park, Hyunchul, 2015. "Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea," Renewable Energy, Elsevier, vol. 74(C), pages 406-413.
    16. Meiling He & Tianhe Lin & Xiaohui Wu & Jianqiang Luo & Yongtao Peng, 2020. "A Systematic Literature Review of Reverse Logistics of End-of-Life Vehicles: Bibliometric Analysis and Research Trend," Energies, MDPI, vol. 13(21), pages 1-22, October.
    17. Liu, Weipeng & Zhao, Chunhui & Peng, Tao & Zhang, Zhongwei & Wan, Anping, 2023. "Simulation-assisted multi-process integrated optimization for greentelligent aluminum casting," Applied Energy, Elsevier, vol. 336(C).
    18. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    19. Dimitris Ioannidis & Dimitra G. Vagiona, 2024. "Optimal Wind Farm Siting Using a Fuzzy Analytic Hierarchy Process: Evaluating the Island of Andros, Greece," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    20. Konstantinos Salonitis, 2020. "Energy Efficiency of Manufacturing Processes and Systems—An Introduction," Energies, MDPI, vol. 13(11), pages 1-5, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2730-:d:364428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.