IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001724.html
   My bibliography  Save this article

Pyrolysis kinetics of the hydrothermal carbons derived from microwave-assisted hydrothermal carbonization of food waste digestate

Author

Listed:
  • Xie, Xiaodi
  • Peng, Chao
  • Song, Xinyu
  • Peng, Nana
  • Gai, Chao

Abstract

The treatment of food waste digestate (FWD) is a major obstacle to the development of industrial biogas field. To mitigate the drying cost and promote energy recovery, a strategy combining microwave-assisted hydrothermal carbonization (MHTC) pretreatment with subsequent pyrolysis for FWD was investigated in this work. Firstly, MHTC was performed at different reaction variables, including reaction temperature, reaction time and solid loading, to convert FWD to hydrothermal carbons (HCs). The fuel property of raw FWD could be effectively promoted by the MHTC pretreatments and reaction temperature was the most influential factor affecting the properties of FWD-derived HCs. Afterwards, thermogravimetrc experiments were conducted to study the pyrolysis behavior of FWD and three representative FWD-derived HCs. Thermal decomposition of FWD-derived HCs is consistent with that of the platform biomass with cellulose-lignin structures. Finally, the kinetic parameters and probable reaction mechanism for the pyrolysis of FWD and representative FWD-derived HCs were determined. The average values of apparent activation energy for FWD and the three HCs were in the range of 85.181–106.499 kJ/mol. The pyrolysis of FWD and the three HCs can be described by the model of three-dimensional diffusion and reaction order, respectively.

Suggested Citation

  • Xie, Xiaodi & Peng, Chao & Song, Xinyu & Peng, Nana & Gai, Chao, 2022. "Pyrolysis kinetics of the hydrothermal carbons derived from microwave-assisted hydrothermal carbonization of food waste digestate," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001724
    DOI: 10.1016/j.energy.2022.123269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Kang & Nanda, Sonil & Sun, Guotao & Qiu, Ling & Gu, Yongqing & Zhang, Tianle & Zhu, Mingqiang & Sun, Runcang, 2019. "Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar," Energy, Elsevier, vol. 186(C).
    2. Gao, Ying & Liu, Yinghui & Zhu, Guangkuo & Xu, Jiayu & xu, Hui & Yuan, Qiaoxia & Zhu, Yuezhao & Sarma, Jyotirmoy & Wang, Yinfeng & Wang, Jing & Ji, Lian, 2018. "Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products," Energy, Elsevier, vol. 165(PB), pages 662-672.
    3. Barbanera, M. & Cotana, F. & Di Matteo, U., 2018. "Co-combustion performance and kinetic study of solid digestate with gasification biochar," Renewable Energy, Elsevier, vol. 121(C), pages 597-605.
    4. Gai, Chao & Chen, Mengjun & Liu, Tingting & Peng, Nana & Liu, Zhengang, 2016. "Gasification characteristics of hydrochar and pyrochar derived from sewage sludge," Energy, Elsevier, vol. 113(C), pages 957-965.
    5. Afolabi, Oluwasola O.D. & Sohail, M. & Thomas, C.L.P., 2017. "Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste," Energy, Elsevier, vol. 134(C), pages 74-89.
    6. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    7. Peng, Nana & Gai, Chao & Peng, Chao, 2020. "Enhancing hydrogen-rich syngas production and energy recovery efficiency by integrating hydrothermal carbonization pretreatment with steam gasification," Energy, Elsevier, vol. 210(C).
    8. Nizamuddin, Sabzoi & Baloch, Humair Ahmed & Griffin, G.J. & Mubarak, N.M. & Bhutto, Abdul Waheed & Abro, Rashid & Mazari, Shaukat Ali & Ali, Brahim Si, 2017. "An overview of effect of process parameters on hydrothermal carbonization of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1289-1299.
    9. Pecchi, Matteo & Patuzzi, Francesco & Benedetti, Vittoria & Di Maggio, Rosa & Baratieri, Marco, 2020. "Kinetic analysis of hydrothermal carbonization using high-pressure differential scanning calorimetry applied to biomass," Applied Energy, Elsevier, vol. 265(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Mingxun & Ge, Zefeng & Wu, Yuqing & Ma, Yuna & Zha, Zhenting & Hou, Zenghui & Zhang, Huiyan, 2024. "Energy utilization of takeaway waste: Components separation and fuel preparation employing hydrothermal carbonization and gasification," Energy, Elsevier, vol. 299(C).
    2. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Deli & Sun, Zhijing & Fu, Hongyue & Liu, Zhenfei & Wang, Fang & Zeng, Jianfei & Yi, Weiming, 2024. "Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 225(C).
    2. He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
    3. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    4. Qi, Renzhi & Xu, Zhihua & Zhou, Yuwei & Zhang, Daofang & Sun, Zhenhua & Chen, Weifang & Xiong, Mengmeng, 2021. "Clean solid fuel produced from cotton textiles waste through hydrothermal carbonization with FeCl3: Upgrading the fuel quality and combustion characteristics," Energy, Elsevier, vol. 214(C).
    5. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Taufer, Noah Luciano & Benedetti, Vittoria & Pecchi, Matteo & Matsumura, Yukihiko & Baratieri, Marco, 2021. "Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products," Renewable Energy, Elsevier, vol. 173(C), pages 934-941.
    7. Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
    8. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    10. Kiran R. Parmar & Andrew B. Ross, 2019. "Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate," Energies, MDPI, vol. 12(9), pages 1-17, April.
    11. repec:spr:circec:v:2:y:2022:i:4:d:10.1007_s43615-022-00148-y is not listed on IDEAS
    12. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    13. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    14. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    15. Ibrahim Shaba Mohammed & Risu Na & Keisuke Kushima & Naoto Shimizu, 2020. "Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    16. Rios-Del Toro, E. Emilia & Chi, Hetian & González-Álvarez, Víctor & Méndez-Acosta, Hugo O. & Arreola-Vargas, Jorge & Liu, Hao, 2021. "Coupling the biochemical and thermochemical biorefinery platforms to enhance energy and product recovery from Agave tequilana bagasse," Applied Energy, Elsevier, vol. 299(C).
    17. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    18. Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
    19. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    20. Liu, Haolin & Ye, Chao & Xu, Yousheng & Wang, Qisong, 2022. "Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar," Energy, Elsevier, vol. 247(C).
    21. Matteo Baldelli & Lorenzo Bartolucci & Stefano Cordiner & Giorgio D’Andrea & Emanuele De Maina & Vincenzo Mulone, 2023. "Biomass to H2: Evaluation of the Impact of PV and TES Power Supply on the Performance of an Integrated Bio-Thermo-Chemical Upgrading Process for Wet Residual Biomass," Energies, MDPI, vol. 16(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.