IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1677-1692.html
   My bibliography  Save this article

Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application

Author

Listed:
  • Khanlari, Ataollah
  • Güler, Hande Özge
  • Tuncer, Azim Doğuş
  • Şirin, Ceylin
  • Bilge, Yaşar Can
  • Yılmaz, Yusuf
  • Güngör, Afşin

Abstract

Solar thermal systems like solar water and solar air collectors (SCs) are generally used because of their simple structure and high thermal efficiency. Solar air collectors could be utilized in drying applications because they are easy applicable and economical. In this study, a novel parallel-pass SC with double baffles (PPSCDB), parallel-pass SC with baffles (PPSCB) and parallel-pass SC (PPSC) without baffle have been designed and tested for drying application. Baffles have been manufactured in plus-shaped and perforated to achieve high thermal performance. The performance of solar collectors has been analyzed numerically and experimentally. In addition, a drying chamber has been coupled with solar air collectors. Celery (Apium Graveolens L.) root has been dried as a product and dried samples’ quality has been analyzed experimentally. The experiments have been conducted at 0.009 kg/s and 0.011 kg/s air mass flow rates. According to the experimental findings, average thermal efficiencies of PPSC, PPSCB and PPSCDB are in the range of 62.10–66.32%, 65.72–69.62% and 71.12–75.11%, respectively. The highest instantaneous efficiency was obtained as 84.30% in higher mass flow rate in PPSCDB. Also, maximum deviation between experimental and numerical results was 9.5%.

Suggested Citation

  • Khanlari, Ataollah & Güler, Hande Özge & Tuncer, Azim Doğuş & Şirin, Ceylin & Bilge, Yaşar Can & Yılmaz, Yusuf & Güngör, Afşin, 2020. "Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application," Renewable Energy, Elsevier, vol. 145(C), pages 1677-1692.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1677-1692
    DOI: 10.1016/j.renene.2019.07.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afshari, Faraz & Sözen, Adnan & Khanlari, Ataollah & Tuncer, Azim Doğuş & Şirin, Ceylin, 2020. "Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater," Renewable Energy, Elsevier, vol. 158(C), pages 297-310.
    2. Lakshmi, D.V.N. & Muthukumar, P. & Nayak, Prakash Kumar, 2021. "Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper," Renewable Energy, Elsevier, vol. 167(C), pages 728-739.
    3. Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
    4. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Kusun, Barış & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Enhancing the performance of an unglazed solar air collector using mesh tubes and Fe3O4 nano-enhanced absorber coating," Energy, Elsevier, vol. 277(C).
    5. Tuncer, Azim Doğuş & Khanlari, Ataollah & Sözen, Adnan & Gürbüz, Emine Yağız & Şirin, Ceylin & Gungor, Afsin, 2020. "Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications," Renewable Energy, Elsevier, vol. 160(C), pages 67-85.
    6. Ağbulut, Ümit & Ayyıldız, Mustafa & Sarıdemir, Suat, 2020. "Prediction of performance, combustion and emission characteristics for a CI engine at varying injection pressures," Energy, Elsevier, vol. 197(C).
    7. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang & Liu, Xianglong & Yin, Gaofei, 2022. "Quality study on different parts of Panax notoginseng root drying with a hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Energy, Elsevier, vol. 245(C).
    8. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    9. Tandel, Hiren U. & Modi, Kalpesh V., 2022. "Experimental assessment of double-pass solar air heater by incorporating perforated baffles and solar water heating system," Renewable Energy, Elsevier, vol. 183(C), pages 385-405.
    10. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    11. Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.
    12. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Bezbaruah, Parag Jyoti & Das, Rajat Subhra & Sarkar, Bikash Kumar, 2021. "Experimental and numerical analysis of solar air heater accoutered with modified conical vortex generators in a staggered fashion," Renewable Energy, Elsevier, vol. 180(C), pages 109-131.
    14. Fatih Selimefendigil & Ceylin Şirin & Hakan F. Öztop, 2022. "Experimental Performance Analysis of a Solar Desalination System Modified with Natural Dolomite Powder Integrated Latent Heat Thermal Storage Unit," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    15. Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
    16. Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.
    17. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1677-1692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.