IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp572-587.html
   My bibliography  Save this article

Flow phenomena leading to surge in a centrifugal compressor

Author

Listed:
  • Semlitsch, Bernhard
  • Mihăescu, Mihai

Abstract

Surge is a global flow instability occurring in centrifugal compressors at low mass-flow rate operation. Due to its violent nature, it is the limiting factor for operability. To enhance the operating range, understanding of the flow instability inception when approaching surge is essential. Therefore, the flow evolution along a speed line is analysed by performing unsteady, three-dimensional flow simulations using a centrifugal compressor geometry with ported shroud. A stable operating condition, at high mass-flow rates, is compared to lower mass-flow rate operating conditions close to and at surge. The particularities of the flow-fields are analysed and described. A smooth flow-field is observed for the stable operating condition, whereas flow reversal manifesting as tip leakage at the outer periphery of the impeller occurs for all off-design operating conditions. The reversed flow exhibits swirling motion in the impeller rotation direction. This induces a globally swirling flow upstream of the impeller, which influences the flow incidence angles at the blades and hence, their efficiency. Proper orthogonal decomposition and dynamic mode decomposition have been performed to analyse the flow structures appearing with surge more thoroughly. For the lowest mass-flow rate operating condition, low frequency modes describing the filling and emptying processes during surge have been found.

Suggested Citation

  • Semlitsch, Bernhard & Mihăescu, Mihai, 2016. "Flow phenomena leading to surge in a centrifugal compressor," Energy, Elsevier, vol. 103(C), pages 572-587.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:572-587
    DOI: 10.1016/j.energy.2016.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Li & Yan Liu & Mohammad Omidi & Chuang Zhang & Hongkun Li, 2021. "Numerical Investigation of Transient Flow Characteristics in a Centrifugal Compressor Stage with Variable Inlet Guide Vanes at Low Mass Flow Rates," Energies, MDPI, vol. 14(23), pages 1-18, November.
    2. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    3. Powers, Katherine & Kennedy, Ian & Archer, Jamie & Eynon, Paul & Horsley, John & Brace, Chris & Copeland, Colin & Milewski, Paul, 2022. "A new first-principles model to predict mild and deep surge for a centrifugal compressor," Energy, Elsevier, vol. 244(PB).
    4. Jixiang Chen & Zhitao Zuo & Xin Zhou & Jianting Sun & Jingxin Li & Wenbin Guo & Haisheng Chen, 2023. "Study on the Influence of Radial Inlet Chamber Splitter Blades on the Oblique Flow Compressor Performance," Energies, MDPI, vol. 16(11), pages 1-21, May.
    5. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    7. Grzegorz Liśkiewicz & Kirill Kabalyk & Andrzej Jaeschke & Filip Grapow & Michał Kulak & Mateusz Stajuda & Władysław Kryłłowicz, 2020. "Unstable Flow Structures Present at Different Rotational Velocities of the Centrifugal Compressor," Energies, MDPI, vol. 13(16), pages 1-19, August.
    8. Aryana, Babak, 2016. "New version of DEA compressor for a novel hybrid gas turbine cycle: TurboDEA," Energy, Elsevier, vol. 111(C), pages 676-690.
    9. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Proper orthogonal decomposition for energy convergence of shock waves under severe knock," Energy, Elsevier, vol. 128(C), pages 813-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:572-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.