Combustion and slagging characteristics of hydrochar derived from the co-hydrothermal carbonization of PVC and alkali coal
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122653
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
- Zhang, Yongsheng & Zahid, Ibrar & Danial, Ali & Minaret, Jamie & Cao, Yijun & Dutta, Animesh, 2021. "Hydrothermal carbonization of miscanthus: Processing, properties, and synergistic Co-combustion with lignite," Energy, Elsevier, vol. 225(C).
- Huang, Neng & Zhao, Peitao & Ghosh, Sudip & Fedyukhin, Alexander, 2019. "Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production," Applied Energy, Elsevier, vol. 240(C), pages 882-892.
- Kim, Daegi & Park, Seyong & Park, Ki Young, 2017. "Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization," Energy, Elsevier, vol. 141(C), pages 598-602.
- Yao, Zhongliang & Ma, Xiaoqian, 2017. "A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis," Energy, Elsevier, vol. 141(C), pages 1156-1165.
- Ullah, Habib & Liu, Guijian & Yousaf, Balal & Ali, Muhammad Ubaid & Abbas, Qumber & Zhou, Chuncai & Rashid, Audil, 2018. "Hydrothermal dewatering of low-rank coals: Influence on the properties and combustion characteristics of the solid products," Energy, Elsevier, vol. 158(C), pages 1192-1203.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rocío García-Morato & Silvia Román & Beatriz Ledesma & Charles Coronella, 2023. "Co-Hydrothermal Carbonization of Grass and Olive Stone as a Means to Lower Water Input to HTC," Resources, MDPI, vol. 12(7), pages 1-14, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
- Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
- Ullah, Habib & Liu, Guijian & Yousaf, Balal & Ali, Muhammad Ubaid & Abbas, Qumber & Zhou, Chuncai & Rashid, Audil, 2018. "Hydrothermal dewatering of low-rank coals: Influence on the properties and combustion characteristics of the solid products," Energy, Elsevier, vol. 158(C), pages 1192-1203.
- Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
- Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.
- Yang, Jie & Liu, Xiangrong & Yang, Zaiwen & Zhao, Shunsheng, 2023. "Biodegradation of Dananhu low-rank coal by Planomicrobium huatugouensis: Target metabolites possessing degradation abilities and their biodegradation pathways," Energy, Elsevier, vol. 276(C).
- Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
- Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
- Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
- Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
- Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015.
"CO2-emissions from Norwegian oil and gas extraction,"
Energy, Elsevier, vol. 90(P2), pages 1956-1966.
- Ekaterina Gavenas & Knut Einar Rosendahl & Terje Skjerpen, 2015. "CO2-emissions form Norwegian oil and gas extraction," Discussion Papers 806, Statistics Norway, Research Department.
- Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Working Paper Series 07-2015, Norwegian University of Life Sciences, School of Economics and Business.
- Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
- Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
- Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
- Shaukat, Muhammad & Muhammad, Sher & Maas, Ellen D.V.L. & Khaliq, Tasneem & Ahmad, Ashfaq, 2022. "Predicting methane emissions from paddy rice soils under biochar and nitrogen addition using DNDC model," Ecological Modelling, Elsevier, vol. 466(C).
- Liu, Quan & Zhang, Guanyu & Kong, Ge & Liu, Mingyang & Cao, Tianqi & Guo, Zhirui & Zhang, Xuesong & Han, Lujia, 2023. "Valorizing manure waste into green coal-like hydrochar: Parameters study, physicochemical characteristics, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 216(C).
- Liang Cheng & Zhaolong Ge & Binwei Xia & Qian Li & Jiren Tang & Yugang Cheng & Shaojie Zuo, 2018. "Research on Hydraulic Technology for Seam Permeability Enhancement in Underground Coal Mines in China," Energies, MDPI, vol. 11(2), pages 1-19, February.
- Tian, Shen & Ma, Jiahui & Shao, Shuangquan & Tian, Qingfeng & Wang, Zhiqiang & Zhang, Zheyu & Hu, Kaiyong, 2024. "Experimental and analytical study on continuous frozen/melting processes of latent thermal energy storage driven by bubble flow," Energy, Elsevier, vol. 290(C).
- Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).
- Lin, Yousheng & Hu, Zhifeng & Ge, Ya & Xiao, Hanmin & Zhang, Gang & He, Qing, 2023. "Chemical looping with oxygen uncoupling of biomass-derived hydrochar with Cu-based oxygen carriers modified by alkaline earth metals," Energy, Elsevier, vol. 280(C).
More about this item
Keywords
Hydrothermal carbonization; Hydrochar; Functional groups; Combustion; Fusion temperature;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.