IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v25y2013icp483-493.html
   My bibliography  Save this article

Climate adaptive building shells: State-of-the-art and future challenges

Author

Listed:
  • Loonen, R.C.G.M.
  • Trčka, M.
  • Cóstola, D.
  • Hensen, J.L.M.

Abstract

Successful building design is becoming an increasingly complex task, due to a growing demand to satisfy more ambitious environmental, societal and economical performance requirements. The application of climate adaptive building shells (CABS) has recently been put forward as a promising alternative within this strive for higher levels of sustainability in the built environment. Compared to conventional façades, CABS offer potential opportunities for energy savings as well improvement of indoor environmental quality. By combining the complementary beneficial aspects of both active and passive building technologies into the building envelope, CABS can draw upon the concepts of adaptability, multi-ability and evolvability. The aim of this paper is to present a comprehensive review of research, design and development efforts in the field of CABS. Based on a structured literature review, a classification of 44 CABS is made to place the variety of concepts in context with each other, and concurrent developments. In doing so, the overall motivations, enabling technologies, and characteristic features that have contributed to the development of CABS are highlighted. Despite the positive perspectives, it was found that the concept of CABS cannot yet be considered mature. Future research needs and further challenges to be resolved are therefore identified as well.

Suggested Citation

  • Loonen, R.C.G.M. & Trčka, M. & Cóstola, D. & Hensen, J.L.M., 2013. "Climate adaptive building shells: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 483-493.
  • Handle: RePEc:eee:rensus:v:25:y:2013:i:c:p:483-493
    DOI: 10.1016/j.rser.2013.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113002670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Transparent and translucent solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2643-2651.
    2. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    3. Sala, Marco, 1994. "The intelligent envelope: The current state of the art," Renewable Energy, Elsevier, vol. 5(5), pages 1039-1046.
    4. Spanaki, Artemisia & Tsoutsos, Theocharis & Kolokotsa, Dionysia, 2011. "On the selection and design of the proper roof pond variant for passive cooling purposes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3523-3533.
    5. Imbabi, Mohammed Salah-Eldin, 2006. "Modular breathing panels for energy efficient, healthy building construction," Renewable Energy, Elsevier, vol. 31(5), pages 729-738.
    6. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    7. Shameri, M.A. & Alghoul, M.A. & Sopian, K. & Zain, M. Fauzi M. & Elayeb, Omkalthum, 2011. "Perspectives of double skin façade systems in buildings and energy saving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1468-1475, April.
    8. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    9. Klotz, Leidy & Mack, Daniel & Klapthor, Brent & Tunstall, Casey & Harrison, Jennilee, 2010. "Unintended anchors: Building rating systems and energy performance goals for U.S. buildings," Energy Policy, Elsevier, vol. 38(7), pages 3557-3566, July.
    10. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    11. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    12. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    13. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    2. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    3. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Ibañez-Puy, María & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio & Martín-Gómez, César, 2017. "Opaque Ventilated Façades: Thermal and energy performance review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 180-191.
    5. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    6. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    7. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    8. Diallo, Thierno M.O. & Zhao, Xudong & Dugue, Antoine & Bonnamy, Paul & Javier Miguel, Francisco & Martinez, Asier & Theodosiou, Theodoros & Liu, Jing-Sheng & Brown, Nathan, 2017. "Numerical investigation of the energy performance of an Opaque Ventilated Façade system employing a smart modular heat recovery unit and a latent heat thermal energy system," Applied Energy, Elsevier, vol. 205(C), pages 130-152.
    9. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    10. Mostafaeipour, Ali & Bardel, Behnoosh & Mohammadi, Kasra & Sedaghat, Ahmad & Dinpashoh, Yagob, 2014. "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 12-19.
    11. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    12. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    13. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    14. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    15. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    16. Sigrid Adriaenssens & Landolf Rhode-Barbarigos & Axel Kilian & Olivier Baverel & Victor Charpentier & Matthew Horner & Denisa Buzatu, 2014. "Dialectic Form Finding of Passive and Adaptive Shading Enclosures," Energies, MDPI, vol. 7(8), pages 1-20, August.
    17. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
    18. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    19. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    20. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:25:y:2013:i:c:p:483-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.