IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic89.html
   My bibliography  Save this article

Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation

Author

Listed:
  • Giovannini, Luigi
  • Favoino, Fabio
  • Pellegrino, Anna
  • Lo Verso, Valerio Roberto Maria
  • Serra, Valentina
  • Zinzi, Michele

Abstract

Thermochromic switchable glazing have been gaining increasing popularity among dynamic building envelope solutions aimed at reducing energy demand in tertiary buildings, due to their capability of varying optical properties according to the material temperature. This enables the management of entering solar loads without any need for an active control, hence thermochromic glazing performance relies on effective material design. Nevertheless, to date the development of thermochromic glazing materials has relied on limited building performance evaluations, considering the effect of managing solar radiation on energy use for heating and cooling alone, and without representing in a comprehensive way the variations of the thermochromic optical properties to include hysteresis phenomena. The present paper aims to evaluate the building performance of a ligand exchange thermochromic glazing (LETC), characterised by a wide variation of optical properties in the visible and solar spectra and hysteresis between heating and cooling cycles. To this aim an ad-hoc developed building performance simulation strategy is presented, enabling data integration between dynamic thermal simulation and climate based daylight analysis, including a thermochromic parametrical model describing the hysteretical variation of optical properties as a function of material temperature, derived from experimental measurements. The simulation method is adopted to evaluate the energy uses for heating, cooling and lighting and the visual comfort in an office space integrating the LETC glazing in different climatic contexts. The results show that the LETC glazing is able to optimise multiple building performance aspects simultaneously. Compared to static glazing benchmarks with comparable selectiveness, for the considered locations, the LETC glazing achieves a total energy use reduction from 3% to 10% and daylight availability improvements from 5% to nearly 20%. Increasing the thermochromic hysteresis has shown a positive effect on improving daylight availability (from 5% to 15%) and on reducing probable glare due to direct solar radiation (from 12% to 25%), with negligible effect on total energy use. Finally, the simulation framework presented represents a general method that can be adopted to evaluate the performance of other switchable glazing technologies as well.

Suggested Citation

  • Giovannini, Luigi & Favoino, Fabio & Pellegrino, Anna & Lo Verso, Valerio Roberto Maria & Serra, Valentina & Zinzi, Michele, 2019. "Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:89
    DOI: 10.1016/j.apenergy.2019.113335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Qian & Favoino, Fabio & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 2: A parametric study for a temperate climate," Energy, Elsevier, vol. 127(C), pages 634-649.
    2. Favoino, Fabio & Jin, Qian & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework," Energy, Elsevier, vol. 127(C), pages 301-309.
    3. Favoino, Fabio & Overend, Mauro & Jin, Qian, 2015. "The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies," Applied Energy, Elsevier, vol. 156(C), pages 1-15.
    4. Tian, Cheng & Chen, Tingyao & Chung, Tse-ming, 2014. "Experimental and simulating examination of computer tools, Radlink and DOE2, for daylighting and energy simulation with venetian blinds," Applied Energy, Elsevier, vol. 124(C), pages 130-139.
    5. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
    6. Kamalisarvestani, M. & Saidur, R. & Mekhilef, S. & Javadi, F.S., 2013. "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henriqueta Teixeira & A. Moret Rodrigues & Daniel Aelenei & M. Glória Gomes, 2024. "Simulation-Based Evaluation of the Impact of an Electrochromic Glazing on the Energy Use and Indoor Comfort of an Office Room," Energies, MDPI, vol. 17(9), pages 1-29, April.
    2. Sultan Kobeyev & Serik Tokbolat & Serdar Durdyev, 2021. "Design and Energy Performance Analysis of a Hotel Building in a Hot and Dry Climate: A Case Study," Energies, MDPI, vol. 14(17), pages 1-18, September.
    3. Miren Juaristi & Thaleia Konstantinou & Tomás Gómez-Acebo & Aurora Monge-Barrio, 2020. "Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    4. Liu, Xiao & Wu, Yupeng, 2021. "Experimental characterisation of a smart glazing with tuneable transparency, light scattering ability and electricity generation function," Applied Energy, Elsevier, vol. 303(C).
    5. Daniel Mann & Cindy Yeung & Roberto Habets & Zeger Vroon & Pascal Buskens, 2020. "Comparative Building Energy Simulation Study of Static and Thermochromically Adaptive Energy-Efficient Glazing in Various Climate Regions," Energies, MDPI, vol. 13(11), pages 1-17, June.
    6. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    7. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).
    2. DeForest, Nicholas & Shehabi, Arman & Selkowitz, Stephen & Milliron, Delia J., 2017. "A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings," Applied Energy, Elsevier, vol. 192(C), pages 95-109.
    3. Miren Juaristi & Thaleia Konstantinou & Tomás Gómez-Acebo & Aurora Monge-Barrio, 2020. "Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    4. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    5. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    6. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Favoino, Fabio & Jin, Qian & Overend, Mauro, 2017. "Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework," Energy, Elsevier, vol. 127(C), pages 301-309.
    8. Pierluigi De Berardinis & Marianna Rotilio & Luisa Capannolo, 2017. "Energy and Sustainable Strategies in the Renovation of Existing Buildings: An Italian Case Study," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    9. Mishra, G.K. & Tiwari, G.N., 2020. "Performance evaluation of 7.2 kWp standalone building integrated semi-transparent photovoltaic thermal system," Renewable Energy, Elsevier, vol. 146(C), pages 205-222.
    10. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Performance of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 303(C).
    11. Germán Campos Gordillo & Germán Ramos Ruiz & Yves Stauffer & Stephan Dasen & Carlos Fernández Bandera, 2020. "EplusLauncher: An API to Perform Complex EnergyPlus Simulations in MATLAB ® and C#," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    12. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
    13. Dehwah, Ammar H.A. & Krarti, Moncef, 2022. "Optimal controls of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 320(C).
    14. Cannavale, Alessandro & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Fiorito, Francesco & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment," Applied Energy, Elsevier, vol. 194(C), pages 94-107.
    15. Pathomthat Chiradeja & Atthapol Ngaopitakkul, 2019. "Energy and Economic Analysis of Tropical Building Envelope Material in Compliance with Thailand’s Building Energy Code," Sustainability, MDPI, vol. 11(23), pages 1-23, December.
    16. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    17. Liu, Xiao & Wu, Yupeng, 2021. "Experimental characterisation of a smart glazing with tuneable transparency, light scattering ability and electricity generation function," Applied Energy, Elsevier, vol. 303(C).
    18. Tyler R. Stevens & Nathan B. Crane & Rydge B. Mulford, 2023. "Topology Morphing Insulation: A Review of Technologies and Energy Performance in Dynamic Building Insulation," Energies, MDPI, vol. 16(19), pages 1-38, October.
    19. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    20. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.