IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032497.html
   My bibliography  Save this article

Statistical assessment of operational parameters using optimized sulphonated titanium nanotubes incorporated sulphonated polystyrene ethylene butylene polystyrene nanocomposite membrane for efficient electricity generation in microbial fuel cell

Author

Listed:
  • Sugumar, Moogambigai
  • Dharmalingam, Sangeetha

Abstract

Sulphonated Polystyrene Ethylene Butylene Polystyrene (SPSEBS) mixed with different weight percentages (2, 4, 6 and 8%) of synthesized Sulphonated Titanium Nanotubes (STNT) to prepare proton exchange membranes (PEM). The membrane properties confirms that SPSEBS +6% STNT exhibits higher water uptake, ion exchange capacity and proton conductivity when compared to certain previously reported membranes thereby suggesting better suitability for fuel cell performance. In present study, three operational parameters were investigated using optimized SPSEBS +6% STNT as PEM for better performance in MFC by adopting Box Behnken design. RSM results reveal that STAT 15 with acetate as substrate, 1000 Ω external resistance and 0.3% catalyst loading rate exhibits a maximum power density of 138 mW/m2. Thus, the synthesized and characterized nanocomposite membranes pose potentials in the fabricated tubular MFC design for enhanced power production. In addition, a regression equation for selected operational parameters for enhanced electricity generation in MFC has been proposed.

Suggested Citation

  • Sugumar, Moogambigai & Dharmalingam, Sangeetha, 2022. "Statistical assessment of operational parameters using optimized sulphonated titanium nanotubes incorporated sulphonated polystyrene ethylene butylene polystyrene nanocomposite membrane for efficient ," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032497
    DOI: 10.1016/j.energy.2021.123000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharyya, Subhes C., 2015. "Influence of India’s transformation on residential energy demand," Applied Energy, Elsevier, vol. 143(C), pages 228-237.
    2. Abdullah, M. & Kamarudin, S.K., 2017. "Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 212-225.
    3. Ayyaru, Sivasankaran & Dharmalingam, Sangeetha, 2015. "A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application," Energy, Elsevier, vol. 88(C), pages 202-208.
    4. Leong, Jun Xing & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Liew, Kien Ben & Ismail, Manal, 2013. "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 575-587.
    5. Slate, Anthony J. & Whitehead, Kathryn A. & Brownson, Dale A.C. & Banks, Craig E., 2019. "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 60-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cano, Vitor & Cano, Julio & Nunes, Sabrina C. & Nolasco, Marcelo A., 2021. "Electricity generation influenced by nitrogen transformations in a microbial fuel cell: assessment of temperature and external resistance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Bahrami, K., 2017. "Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process," Energy, Elsevier, vol. 141(C), pages 1350-1362.
    3. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    4. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    5. Jafary, Tahereh & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Kim, Byung Hong & Md Jahim, Jamaliah & Ismail, Manal & Lim, Swee Su, 2015. "Biocathode in microbial electrolysis cell; present status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 23-33.
    6. Fan, Jin & Li, Jun & Wu, Yanrui & Wang, Shanyong & Zhao, Dingtao, 2016. "The effects of allowance price on energy demand under a personal carbon trading scheme," Applied Energy, Elsevier, vol. 170(C), pages 242-249.
    7. Yawale, Satish Kumar & Hanaoka, Tatsuya & Kapshe, Manmohan & Pandey, Rahul, 2023. "End-use energy projections: Future regional disparity and energy poverty at the household level in rural and urban areas of India," Energy Policy, Elsevier, vol. 182(C).
    8. Miguel Ángel López Zavala & Pamela Renée Torres Delenne & Omar Israel González Peña, 2018. "Improvement of Wastewater Treatment Performance and Power Generation in Microbial Fuel Cells by Enhancing Hydrolysis and Acidogenesis, and by Reducing Internal Losses," Energies, MDPI, vol. 11(9), pages 1-14, September.
    9. Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
    10. Balezentis, Tomas, 2020. "Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A case from Eastern Europe," Energy Policy, Elsevier, vol. 140(C).
    11. Liu, Hong-zhou & Chen, Tie-zhu & Wang, Nan & Zhang, Yu-rui & Li, Jian-chang, 2024. "A new strategy for improving MFC power output by shared electrode MFC–MEC coupling," Applied Energy, Elsevier, vol. 359(C).
    12. Luo, Qizhao & Pei, Junxian & Yun, Panfeng & Hu, Xuejiao & Cao, Bin & Shan, Kunpeng & Tang, Bin & Huang, Kaiming & Chen, Aofei & Huang, Lu & Huang, Zhi & Jiang, Haifeng, 2023. "Simultaneous water production and electricity generation driven by synergistic temperature-salinity gradient in thermo-osmosis process," Applied Energy, Elsevier, vol. 351(C).
    13. Yawale, Satish Kumar & Hanaoka, Tatsuya & Kapshe, Manmohan, 2021. "Development of energy balance table for rural and urban households and evaluation of energy consumption in Indian states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    14. Escapa, A. & Mateos, R. & Martínez, E.J. & Blanes, J., 2016. "Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 942-956.
    15. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.
    16. Guotao Sun & Anders Thygesen & Anne S. Meyer, 2016. "Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate," Energies, MDPI, vol. 9(5), pages 1-11, May.
    17. Liu, Shu-Hui & Fu, Sih-Hua & Chen, Chia-Ying & Lin, Chi-Wen, 2020. "Enhanced processing of exhaust gas and power generation by connecting mini-tubular microbial fuel cells in series with a biotrickling filter," Renewable Energy, Elsevier, vol. 156(C), pages 342-348.
    18. de la Rue du Can, Stephane & Khandekar, Aditya & Abhyankar, Nikit & Phadke, Amol & Khanna, Nina Zheng & Fridley, David & Zhou, Nan, 2019. "Modeling India’s energy future using a bottom-up approach," Applied Energy, Elsevier, vol. 238(C), pages 1108-1125.
    19. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.
    20. Alberto González-Martínez & Miguel de Simón-Martín & Roberto López & Raquel Táboas-Fernández & Antonio Bernardo-Sánchez, 2019. "Remediation of Potential Toxic Elements from Wastes and Soils: Analysis and Energy Prospects," Sustainability, MDPI, vol. 11(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.