IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics036054422400063x.html
   My bibliography  Save this article

Numerical analysis on hydrate production performance with multi-well systems: Synergistic effect of adjacent wells and implications on field exploitation

Author

Listed:
  • Dong, Lin
  • Wu, Nengyou
  • Leonenko, Yuri
  • Wan, Yizhao
  • Zhang, Yajuan
  • Li, Yanlong

Abstract

Multi-well technology is an alternative method to achieve commercialization development of the gas hydrate, which further requires proper production strategies. However, its stimulation mechanisms remain unclear, especially the synergistic effects of adjacent wells, restricting the production strategy formulation. Thus, we established a 3D model to characterize multi-physics fields, flow characteristics, as well as productivity of hydrate reservoirs on a large scale. It can display the fluid flow in complex geometries, realizing the accurate characterization of the flow field during hydrate production with multi-well systems. Total productivity of optimal multi-well systems can be 1.44 times higher than all single wells independently, Meanwhile, physical fields and flow characteristics alter with the well position as well as well number. After that, an index Ise is proposed to realize the quantitative evaluation of the impact of synergistic effect on productivity. The impact of synergistic effect strengthens continuously versus duration time and well spacing. In addition, the occurring synergistic effect can increase productivity by promoting hydrate dissociation in expanded pressure drop areas. In contrast, the fluid resistance effect decreases the per-well produced gas and water due to inflow reduction induced by inter-well interference. Moreover, an estimation model is established to identify the proper well spacing for lower drilling costs and larger productivity. This work will enable the extended application of multi-well systems with the synergistic effect and further promote the efficient development of the gas hydrate.

Suggested Citation

  • Dong, Lin & Wu, Nengyou & Leonenko, Yuri & Wan, Yizhao & Zhang, Yajuan & Li, Yanlong, 2024. "Numerical analysis on hydrate production performance with multi-well systems: Synergistic effect of adjacent wells and implications on field exploitation," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422400063x
    DOI: 10.1016/j.energy.2024.130292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400063X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Lin & Wu, Nengyou & Leonenko, Yuri & Wan, Yizhao & Liao, Hualin & Hu, Gaowei & Li, Yanlong, 2023. "A coupled thermal-hydraulic-mechanical model for drilling fluid invasion into hydrate-bearing sediments," Energy, Elsevier, vol. 278(C).
    2. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    3. Terzariol, M. & Goldsztein, G. & Santamarina, J.C., 2017. "Maximum recoverable gas from hydrate bearing sediments by depressurization," Energy, Elsevier, vol. 141(C), pages 1622-1628.
    4. Wang, Xiaochu & Sun, Youhong & Li, Bing & Zhang, Guobiao & Guo, Wei & Li, Shengli & Jiang, Shuhui & Peng, Saiyu & Chen, Hangkai, 2023. "Reservoir stimulation of marine natural gas hydrate-a review," Energy, Elsevier, vol. 263(PE).
    5. Dong, Lin & Wan, Yizhao & Li, Yanlong & Liao, Hualin & Liu, Changling & Wu, Nengyou & Leonenko, Yuri, 2022. "3D numerical simulation on drilling fluid invasion into natural gas hydrate reservoirs," Energy, Elsevier, vol. 241(C).
    6. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    7. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    8. Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Gu, Yuhang & Li, Yanlong & Cao, Xinxin & Mao, Peixiao & Liu, Tianle & Qin, Shunbo & Jiang, Guosheng, 2023. "Gas recovery from silty hydrate reservoirs by using vertical and horizontal well patterns in the South China Sea: Effect of well spacing and its optimization," Energy, Elsevier, vol. 275(C).
    9. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Zhao, Yapeng & Kong, Liang & Liu, Jiaqi & Sang, Songkui & Zeng, Zhaoyuan & Wang, Ning & Yuan, Qingmeng, 2023. "Permeability properties of natural gas hydrate-bearing sediments considering dynamic stress coupling: A comprehensive experimental investigation," Energy, Elsevier, vol. 283(C).
    11. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    2. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    3. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    4. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    5. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    6. Dong, Lin & Wu, Nengyou & Leonenko, Yuri & Wan, Yizhao & Liao, Hualin & Hu, Gaowei & Li, Yanlong, 2023. "A coupled thermal-hydraulic-mechanical model for drilling fluid invasion into hydrate-bearing sediments," Energy, Elsevier, vol. 278(C).
    7. Hui, Chengyu & Zhang, Yiqun & Wu, Xiaoya & Zhang, Panpan & Li, Gensheng & Lu, Jingsheng & Zhang, Bo, 2024. "Numerical analysis of the production behaviors and geomechanical responses during natural gas hydrate production by vertical wells fracturing," Energy, Elsevier, vol. 292(C).
    8. Guo, Yang & Li, Shuxia & Qin, Xuwen & Lu, Cheng & Wu, Didi & Liu, Lu & Zhang, Ningtao, 2023. "Enhanced gas production from low-permeability hydrate reservoirs based on embedded discrete fracture models: Influence of branch parameters," Energy, Elsevier, vol. 282(C).
    9. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    10. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    11. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    12. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    13. Zhang, Zhaobin & Li, Yuxuan & Li, Shouding & He, Jianming & Li, Xiao & Xu, Tao & Lu, Cheng & Qin, Xuwen, 2024. "Optimization of the natural gas hydrate hot water injection production method: Insights from numerical and phase equilibrium analysis," Applied Energy, Elsevier, vol. 361(C).
    14. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    15. Guo, Zeyu & Chen, Xin & Wang, Bo & Ren, Xingwei, 2023. "Two-phase relative permeability of hydrate-bearing sediments: A theoretical model," Energy, Elsevier, vol. 275(C).
    16. Nagibin, P.S. & Vinogrodskiy, K. & Shlegel, N.E. & Strizhak, P.A., 2024. "Using methane hydrate to intensify the combustion of low-rank coal fuels," Energy, Elsevier, vol. 304(C).
    17. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    18. Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Ji, Yunkai & Xia, Zhizeng & Xu, Boyue, 2018. "Stage analysis and production evaluation for class III gas hydrate deposit by depressurization," Energy, Elsevier, vol. 165(PB), pages 501-511.
    19. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    20. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422400063x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.