IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031455.html
   My bibliography  Save this article

Experimental and numerical investigation of a multi-functional photovoltaic/thermal wall: A practical application in the civil building

Author

Listed:
  • Wang, Chuyao
  • Ji, Jie
  • Zhang, Chengyan
  • Ke, Wei
  • Tang, Yayun
  • Tian, Xinyi

Abstract

This article proposed a multifunctional PV/T (MFPV/T) wall with the built-out PV cells. While generating electricity, this system could produce warm air in heating seasons and hot water in non-heating seasons. Besides, this novel structure could solve the issue of unreliability of the conventional PV/T collectors. In this work, firstly, the thermal and electrical performance of the proposed system was tested in a civil building. Then, the performance comparison between the MFPV/T walls with the built-out and built-in PV cells (EMFPV/T and IMFPV/T walls) was conducted based on the validated simulation models. Finally, the impact of change in parameters on the system performance was analyzed. The main results were: (1) During the experimental period, the thermal and electrical efficiencies were 17.55% and 13.88% in PV/air mode while those were 8.92% and 14.09% in PV/water mode. (2) During the studied three days, the exergy of the EMFPV/T wall was higher than that of the IMFPV/T wall by 390 Wh for PV/air mode and 750 Wh for PV/water mode. (3) Decreasing cavity depth and increasing vent airtightness, PV coverage ratio, and water tank volume had different effects on the energy output, but they all increased the exergy production.

Suggested Citation

  • Wang, Chuyao & Ji, Jie & Zhang, Chengyan & Ke, Wei & Tang, Yayun & Tian, Xinyi, 2022. "Experimental and numerical investigation of a multi-functional photovoltaic/thermal wall: A practical application in the civil building," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031455
    DOI: 10.1016/j.energy.2021.122896
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhaomeng & Ji, Jie & Yuan, Weiqi & Song, Zhiying & Ren, Xiao & Uddin, Md Muin & Luo, Kun & Zhao, Xudong, 2020. "Experimental and numerical investigations on the performance of a G-PV/T system comparing with A-PV/T system," Energy, Elsevier, vol. 194(C).
    2. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    3. Shahsavar, Amin & Rajabi, Yalda, 2018. "Exergoeconomic and enviroeconomic study of an air based building integrated photovoltaic/thermal (BIPV/T) system," Energy, Elsevier, vol. 144(C), pages 877-886.
    4. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
    5. Chow, T.T. & Chan, A.L.S. & Fong, K.F. & Lin, Z. & He, W. & Ji, J., 2009. "Annual performance of building-integrated photovoltaic/water-heating system for warm climate application," Applied Energy, Elsevier, vol. 86(5), pages 689-696, May.
    6. Xu, Lijie & Ji, Jie & Luo, Kun & Li, Zhaomeng & Xu, Ruru & Huang, Shengjuan, 2020. "Annual analysis of a multi-functional BIPV/T solar wall system in typical cities of China," Energy, Elsevier, vol. 197(C).
    7. Yuan, Weiqi & Ji, Jie & Li, Zhaomeng & Zhou, Fan & Ren, Xiao & Zhao, Xudong & Liu, Shuli, 2018. "Comparison study of the performance of two kinds of photovoltaic/thermal(PV/T) systems and a PV module at high ambient temperature," Energy, Elsevier, vol. 148(C), pages 1153-1161.
    8. Sun, Wei & Ji, Jie & Luo, Chenglong & He, Wei, 2011. "Performance of PV-Trombe wall in winter correlated with south façade design," Applied Energy, Elsevier, vol. 88(1), pages 224-231, January.
    9. Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building-façade integrated solar thermal collectors: Energy-economic performance and indoor comfort simulation model of a water based prototype for heating, cooling, and DHW production," Renewable Energy, Elsevier, vol. 137(C), pages 20-36.
    10. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    11. Yu, Qiongwan & Hu, Mingke & Li, Junfei & Wang, Yunyun & Pei, Gang, 2020. "Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 153(C), pages 404-419.
    12. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    2. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    3. Wang, Chuyao & Ji, Jie & Yang, Hongxing, 2024. "Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    2. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    3. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    6. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    7. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    8. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    9. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    10. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    11. Ke, Wei & Ji, Jie & Xu, Lijie & Yu, Bendong & Tian, Xinyi & Wang, Jun, 2021. "Numerical study and experimental validation of a multi-functional dual-air-channel solar wall system with PCM," Energy, Elsevier, vol. 227(C).
    12. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    13. Yiqing Dai & Yu Bai, 2020. "Performance Improvement for Building Integrated Photovoltaics in Practice: A Review," Energies, MDPI, vol. 14(1), pages 1-22, December.
    14. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).
    15. Ke, Wei & Ji, Jie & Xu, Lijie & Xie, Hao & Wang, Chuyao & Yu, Bendong, 2021. "Annual performance analysis of a dual-air-channel solar wall system with phase change material in different climate regions of China," Energy, Elsevier, vol. 235(C).
    16. Xu, Lijie & Luo, Kun & Ji, Jie & Yu, Bendong & Li, Zhaomeng & Huang, Shengjuan, 2020. "Study of a hybrid BIPV/T solar wall system," Energy, Elsevier, vol. 193(C).
    17. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    18. Zhang, Tiantian & Yang, Hongxing, 2019. "Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes," Applied Energy, Elsevier, vol. 250(C), pages 834-845.
    19. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.