IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp877-886.html
   My bibliography  Save this article

Exergoeconomic and enviroeconomic study of an air based building integrated photovoltaic/thermal (BIPV/T) system

Author

Listed:
  • Shahsavar, Amin
  • Rajabi, Yalda

Abstract

The aim of this numerical investigation is to analyze the performance of a building integrated photovoltaic/thermal (BIPV/T) system from exergoeconomic and enviroeconomic points of view for Kermanshah, Iran climatic condition. In the proposed system, the cooling potential of supply air and exhaust air is used for cooling the PV panels as well as heating the supply air by heat rejection of the panels. The results showed that the yearly total amount of 3038.83 kWh thermal energy, 2259.64 kWh electrical energy, and 19.97 kWh useful exergy could be saved by using the studied BIPV/T system. Furthermore, the annual reduction of 5.94 tons of CO2 emission was achieved by using the proposed BIPV/T system. Finally, it was revealed that proposed system provides 32.52% of the required heating load for ventilation air on the average basis.

Suggested Citation

  • Shahsavar, Amin & Rajabi, Yalda, 2018. "Exergoeconomic and enviroeconomic study of an air based building integrated photovoltaic/thermal (BIPV/T) system," Energy, Elsevier, vol. 144(C), pages 877-886.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:877-886
    DOI: 10.1016/j.energy.2017.12.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keshtkar, Mohammad Mehdi & Talebizadeh, Pouyan, 2017. "Multi-objective optimization of cooling water package based on 3E analysis: A case study," Energy, Elsevier, vol. 134(C), pages 840-849.
    2. Tiwari, Sumit & Tiwari, G.N., 2016. "Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer," Energy, Elsevier, vol. 114(C), pages 155-164.
    3. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    4. Saadon, Syamimi & Gaillard, Leon & Giroux-Julien, Stéphanie & Ménézo, Christophe, 2016. "Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope," Renewable Energy, Elsevier, vol. 87(P1), pages 517-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Pierro, Marco & Moser, David & Nižetić, Sandro & Karimi, Nader & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Building integrated photovoltaic/thermal technologies in Middle Eastern and North African countries: Current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    3. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    4. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    5. Wang, Chuyao & Ji, Jie & Zhang, Chengyan & Ke, Wei & Tang, Yayun & Tian, Xinyi, 2022. "Experimental and numerical investigation of a multi-functional photovoltaic/thermal wall: A practical application in the civil building," Energy, Elsevier, vol. 241(C).
    6. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    8. Yousef, Mohamed S. & Sharaf, Mohamed & Huzayyin, A.S., 2022. "Energy, exergy, economic, and enviroeconomic assessment of a photovoltaic module incorporated with a paraffin-metal foam composite: An experimental study," Energy, Elsevier, vol. 238(PB).
    9. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Passive and active performance assessment of building integrated hybrid solar photovoltaic/thermal collector prototypes: Energy, comfort, and economic analyses," Energy, Elsevier, vol. 209(C).
    10. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    11. Shahsavar, Amin & Khanmohammadi, Shoaib & Khaki, Mahsa & Salmanzadeh, Mazyar, 2018. "Performance assessment of an innovative exhaust air energy recovery system based on the PV/T-assisted thermal wheel," Energy, Elsevier, vol. 162(C), pages 682-696.
    12. Chong Zhang & Jinbo Wang & Liao Li & Feifei Wang & Wenjie Gang, 2020. "Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    13. Shahsavar, Amin & Jahangiri, Ali & Qatarani nejad, Amir & Ahmadi, Gholamreza & Karamzadeh dizaji, Alireza, 2022. "Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations," Renewable Energy, Elsevier, vol. 196(C), pages 1017-1028.
    14. Saadon, Syamimi & Gaillard, Leon & Menezo, Christophe & Giroux-Julien, Stéphanie, 2020. "Exergy, exergoeconomic and enviroeconomic analysis of a building integrated semi-transparent photovoltaic/thermal (BISTPV/T) by natural ventilation," Renewable Energy, Elsevier, vol. 150(C), pages 981-989.
    15. Sharaf, Mohamed & Yousef, Mohamed S. & Huzayyin, A.S., 2022. "Year-round energy and exergy performance investigation of a photovoltaic panel coupled with metal foam/phase change material composite," Renewable Energy, Elsevier, vol. 189(C), pages 777-789.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Pushpendra & Shrivastava, Vipin & Kumar, Anil, 2018. "Recent developments in greenhouse solar drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3250-3262.
    2. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    3. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    4. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    5. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    6. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    7. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    8. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
    9. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    10. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    11. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    12. Ibrahim Yildiz & Hakan Caliskan & Kazutoshi Mori, 2020. "Exergy analysis and nanoparticle assessment of cooking oil biodiesel and standard diesel fueled internal combustion engine," Energy & Environment, , vol. 31(8), pages 1303-1317, December.
    13. Hainoun, A. & Almoustafa, A. & Seif Aldin, M., 2010. "Estimating the health damage costs of syrian electricity generation system using impact pathway approach," Energy, Elsevier, vol. 35(2), pages 628-638.
    14. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    15. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Splitting physical exergy: Theory and application," Energy, Elsevier, vol. 167(C), pages 698-707.
    16. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    17. Mustapha Habib & Elmar Bollin & Qian Wang, 2023. "Battery Energy Management System Using Edge-Driven Fuzzy Logic," Energies, MDPI, vol. 16(8), pages 1-18, April.
    18. Hu, Jianjun & Lan, Shuhan & Hu, Jingheng, 2024. "A self-driven solar air heater integrated with a thermal energy storage unit: Design and experiment study," Energy, Elsevier, vol. 287(C).
    19. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    20. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:877-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.