IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219318687.html
   My bibliography  Save this article

Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study

Author

Listed:
  • Lin, Yuan
  • Ji, Jie
  • Lu, Xiangyou
  • Luo, Kun
  • Zhou, Fan
  • Ma, Yang

Abstract

This study proposed a new system with the photovoltaic (PV) panel installed in the middle of channel of the Trombe wall (TW) system, called as built-middle photovoltaic integrated Trombe wall (PVMTW), which can realize multiple functions of electricity generation, space heating and heat preservation. The experiment rig was built to study the temperature field of the PVMTW system in heating seasons, in Hefei. A mathematical model of the PVMTW system was developed and validated against experimental data. Using the validated model, the thermal performance of the PVMTW system was investigated by comparison with that of the classic Trombe wall. The results showed that in the daytime, the average thermal efficiency of the PVMTW system was 65.2% higher than that of the classic TW system. In terms of room air temperature and interior surface temperatures on the walls, the indoor thermal comfortable of the PVMTW system was almost the same as that of the classic TW system. The average predicted mean vote (PMV) for two rooms (room with the PVMTW system and room with the classic TW system) were 0.05 and −0.36, respectively. Additionally, the average electrical efficiency and average total efficiency achieved 0.120 and 0.585, respectively.

Suggested Citation

  • Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318687
    DOI: 10.1016/j.energy.2019.116173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Jiankai & Chen, Zhihua & Zhang, Long & Cheng, Yuanda & Sun, Suyuting & Jie, Jia, 2019. "Experimental investigation on the heating performance of a novel designed trombe wall," Energy, Elsevier, vol. 168(C), pages 728-736.
    2. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    3. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    4. Jiang, Bin & Ji, Jie & Yi, Hua, 2008. "The influence of PV coverage ratio on thermal and electrical performance of photovoltaic-Trombe wall," Renewable Energy, Elsevier, vol. 33(11), pages 2491-2498.
    5. Kundakci Koyunbaba, Basak & Yilmaz, Zerrin, 2012. "The comparison of Trombe wall systems with single glass, double glass and PV panels," Renewable Energy, Elsevier, vol. 45(C), pages 111-118.
    6. Ma, Qingsong & Fukuda, Hiroatsu & Lee, Myonghyang & Kobatake, Takumi & Kuma, Yuko & Ozaki, Akihito, 2018. "Study on the utilization of heat in the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system," Applied Energy, Elsevier, vol. 222(C), pages 861-871.
    7. Sun, Wei & Ji, Jie & Luo, Chenglong & He, Wei, 2011. "Performance of PV-Trombe wall in winter correlated with south façade design," Applied Energy, Elsevier, vol. 88(1), pages 224-231, January.
    8. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    9. Vanaga, Ruta & Blumberga, Andra & Freimanis, Ritvars & Mols, Toms & Blumberga, Dagnija, 2018. "Solar facade module for nearly zero energy building," Energy, Elsevier, vol. 157(C), pages 1025-1034.
    10. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    11. Ahmed, Omer K. & Hamada, Khalaf I. & Salih, Abdulrazzaq M., 2019. "Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study," Energy, Elsevier, vol. 171(C), pages 14-26.
    12. Luo, Chenglong & Xu, Lijie & Ji, Jie & Liao, Mengyin & Sun, Dan, 2017. "Experimental study of a modified solar phase change material storage wall system," Energy, Elsevier, vol. 128(C), pages 224-231.
    13. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    14. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    15. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    16. Yu, Tao & Liu, Bowan & Lei, Bo & Yuan, Yanping & Bi, Haiquan & Zhang, Zili, 2019. "Thermal performance of a heating system combining solar air collector with hollow ventilated interior wall in residential buildings on Tibetan Plateau," Energy, Elsevier, vol. 182(C), pages 93-109.
    17. Huang, Junchao & Yu, Jinghua & Yang, Hongxing, 2018. "Effects of key factors on the heat insulation performance of a hollow block ventilated wall," Applied Energy, Elsevier, vol. 232(C), pages 409-423.
    18. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    19. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    2. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    3. Shao, Nina & Ma, Liangdong & Zhou, Chao & Zhang, Dianguang, 2022. "Experimental study on the heat transfer performance of the PVT ventilated roof as heat exchanger for heat pump system," Renewable Energy, Elsevier, vol. 187(C), pages 995-1008.
    4. Xie, Xing & Chen, Xing-ni & Xu, Bin & Pei, Gang, 2022. "Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio," Energy, Elsevier, vol. 244(PB).
    5. Hou, Liqiang & Liu, Yan & Zhu, Yiyu & Zhao, Xiaolong & Yang, Liu, 2024. "Thermal performance of cavity masonry walls and thermal design investigation in Western China," Energy, Elsevier, vol. 292(C).
    6. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    7. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    8. Wang, Chuyao & Ji, Jie & Zhang, Chengyan & Ke, Wei & Tang, Yayun & Tian, Xinyi, 2022. "Experimental and numerical investigation of a multi-functional photovoltaic/thermal wall: A practical application in the civil building," Energy, Elsevier, vol. 241(C).
    9. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    10. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    11. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    12. Krzysztof Sornek & Karolina Papis-Frączek, 2022. "Development and Tests of the Solar Air Heater with Thermal Energy Storage," Energies, MDPI, vol. 15(18), pages 1-20, September.
    13. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    14. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    15. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    3. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    4. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    5. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    6. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    7. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    8. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    9. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    10. Yu, Bendong & Yang, Jichun & He, Wei & Qin, Minghui & Zhao, Xudong & Chen, Hongbing, 2019. "The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system," Energy, Elsevier, vol. 174(C), pages 420-435.
    11. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).
    12. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    13. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    14. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    15. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    16. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    17. Gu, Tao & Li, Niansi & Li, Yulin & Che, Lei & Yu, Bendong & Liu, Huifang, 2023. "A novel Trombe wall with photo-thermal synergistically catalytic purification blinds: Material and experimental performance study," Energy, Elsevier, vol. 278(PB).
    18. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    19. Li, Niansi & Cao, Xuhui & Zhang, Guoji & Wang, Yiting & Hu, Xuan & Liu, Jin & Yu, Bendong & Ji, Jie & Liu, Xiaoyong, 2024. "The experimental and numerical study on a novel all-day PCM thermal-catalytic purified Trombe wall in winter," Energy, Elsevier, vol. 299(C).
    20. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.