IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221027985.html
   My bibliography  Save this article

Accelerated methane storage in clathrate hydrates using the natural tobacco

Author

Listed:
  • Li, Chunxiao
  • Yang, Liang
  • Liu, Daoping
  • Liu, Ni
  • Xie, Yingming
  • Cui, Guomin
  • Zhang, Lixin
  • Gao, Ming
  • Zhao, Yugang
  • Wang, Juan

Abstract

The rapid formation rate and high storage capacity of clathrate hydrates are crucial for natural gas storage and transportation. In this study, a series of wet tobacco samples prepared by soaking different masses of tobacco shred/granules in water were used to store methane in the hydrate. Gas consumption experiments were conducted in an unstirred reactor to investigate the hydrate formation kinetics in the tobacco/water mixtures and their filtrates at 274.15 K and 8.0 MPa. The results demonstrated that the tobacco solutions with surfactivity played a promoting role in the hydrate formation. The wet loose biomass materials provided abundant nucleation sites for gas to solid hydrates. Compared to pure water, the tobacco–water mixtures significantly shorten the induction time of nucleation and accelerate hydrate growth. The amount of methane stored in tobacco granule systems ranged from 112.3 to 160.3 cm3 cm−3, and the storage rates reached 2.06–5.58 cm3 cm−3·min−1. The wet tobacco shreds exhibited higher gas uptakes (132.6–171.6 cm3 cm−3) than the tobacco granule systems and tobacco shreds filtrates at the same liquid–solid ratio. The use of green wet tobacco samples to enhance of hydration should be helpful for the extension of hydrate-based technology.

Suggested Citation

  • Li, Chunxiao & Yang, Liang & Liu, Daoping & Liu, Ni & Xie, Yingming & Cui, Guomin & Zhang, Lixin & Gao, Ming & Zhao, Yugang & Wang, Juan, 2022. "Accelerated methane storage in clathrate hydrates using the natural tobacco," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221027985
    DOI: 10.1016/j.energy.2021.122549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    2. Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
    3. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    2. Zhou, Xuebing & Kang, Zhanxiao & Lu, Jingsheng & Fan, Jintu & Zang, Xiaoya & Liang, Deqing, 2023. "Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics," Applied Energy, Elsevier, vol. 336(C).
    3. Zhang, Xuemin & Liu, Qingqing & He, Jiajin & Yuan, Qing & Li, Jinping & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2024. "Research progress of incremental synthesis and enhancement mechanism of natural gas hydrates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Lingli & Ding, Jiaxiang & Liang, Deqing, 2019. "Enhanced CH4 storage in hydrates with the presence of sucrose stearate," Energy, Elsevier, vol. 180(C), pages 978-988.
    2. Zhang, Xuemin & Liu, Qingqing & He, Jiajin & Yuan, Qing & Li, Jinping & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2024. "Research progress of incremental synthesis and enhancement mechanism of natural gas hydrates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    4. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    5. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    6. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    7. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    8. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    9. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    10. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    11. Maria Filomena Loreto & Umberta Tinivella & Flavio Accaino & Michela Giustiniani, 2010. "Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis," Energies, MDPI, vol. 4(1), pages 1-18, December.
    12. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    13. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    14. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    15. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    16. Luís Bernardes & Júlio Carneiro & Pedro Madureira & Filipe Brandão & Cristina Roque, 2015. "Determination of Priority Study Areas for Coupling CO2 Storage and CH 4 Gas Hydrates Recovery in the Portuguese Offshore Area," Energies, MDPI, vol. 8(9), pages 1-17, September.
    17. You, Zeshao & Li, Yanghui & Yang, Meixiao & Wu, Peng & Liu, Tao & Li, Jiayu & Hu, Wenkang & Song, Yongchen, 2024. "Investigation of particle-scale mechanical behavior of hydrate-bearing sands using DEM: Focus on hydrate habits," Energy, Elsevier, vol. 289(C).
    18. Nicola Varini & Niall J. English & Christian R. Trott, 2012. "Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms," Energies, MDPI, vol. 5(9), pages 1-8, September.
    19. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    20. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221027985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.