IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221030334.html
   My bibliography  Save this article

Reactive separation processes applied to biodiesel production from residual oils and fats: Design, optimization and techno-economic assessment of routes using solid catalysts

Author

Listed:
  • Albuquerque, Allan Almeida
  • Ng, Flora T.T.
  • Danielski, Leandro
  • Stragevitch, Luiz

Abstract

Three solid acid-catalyzed (SAC) processes for biodiesel production from residual oil and fats (ROFs) with HWSi/Al2O3 as catalyst were designed and optimized using Aspen Plus: simultaneous esterification, transesterification, and methanol separation based on catalytic distillation (CD) (process A) and catalytic absorption (CA) (process B), where CA has not yet been investigated in these conditions; and hydro-esterification industrial process using CD (process C1). For the first time, processes A, B and C based on SAC route were optimized and compared regarding to techno-economic and environmental aspects. Processes A and B were the most economically and eco-friendly options. Compared to process B, process A was the best option due to simpler flowsheet. Process A2 presented 25.6, 60.1, 4.6, 8.6, 52.6 and 62.8% lower capital, utilities (Cutil), operation, total annualized (TAC), waste treatment (Cwaste) and CO2 emission costs than process C1. A global optimization developed for process A saved 430 k$/year on TAC. After a heat integration, process B presented 4.9 and 10.8% lower Cutil and Cwaste than process A. Process A was also designed for FFA levels of 5–25 wt%, where the biodiesel break-even price remained competitive (0.48–0.75 $/kg) with diesel price.

Suggested Citation

  • Albuquerque, Allan Almeida & Ng, Flora T.T. & Danielski, Leandro & Stragevitch, Luiz, 2022. "Reactive separation processes applied to biodiesel production from residual oils and fats: Design, optimization and techno-economic assessment of routes using solid catalysts," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030334
    DOI: 10.1016/j.energy.2021.122784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guedes do Nascimento, Leomário & Costa Monteiro, Luciane Pimentel & de Cássia Colman Simões, Rita & Prata, Diego Martinez, 2023. "Eco-efficiency analysis and intensification of the biodiesel production process through vapor recompression strategy," Energy, Elsevier, vol. 275(C).
    2. Yang, Ning & Sheng, Xueru & Ti, Liting & Jia, Haiyuan & Ping, Qingwei & Li, Ning, 2023. "Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiranarongkorn, Kunlanan & Im-orb, Karittha & Panpranot, Joongjai & Maréchal, François & Arpornwichanop, Amornchai, 2021. "Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation," Energy, Elsevier, vol. 226(C).
    2. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Galusnyak, Stefan Cristian & Petrescu, Letitia & Cormos, Calin-Cristian, 2022. "Classical vs. reactive distillation technologies for biodiesel production: An environmental comparison using LCA methodology," Renewable Energy, Elsevier, vol. 192(C), pages 289-299.
    4. Wang, Qianlin & Han, Jiaqi & Chen, Feng & Hu, Su & Yun, Cheng & Dou, Zhan & Yan, Tingjun & Yang, Guoan, 2024. "Modeling risk characterization networks for chemical processes based on multi-variate data," Energy, Elsevier, vol. 293(C).
    5. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Eyvazi-Abhari, Nargess & Khalili-Garakani, Amirhossein & Kasiri, Norollah, 2023. "Reaction/distillation matrix algorithm development to cover sequences containing reactive HIDiC: Validation in optimized process of dimethyl carbonate production," Energy, Elsevier, vol. 276(C).
    7. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    8. Wang, Lili & Zhao, Jun & Teng, Junfeng & Dong, Shilong & Wang, Yinglong & Xiang, Shuguang & Sun, Xiaoyan, 2022. "Study on an energy-saving process for separation ethylene elycol mixture through heat-pump, heat-integration and ORC driven by waste-heat," Energy, Elsevier, vol. 243(C).
    9. Letitia Petrescu & Codruta-Maria Cormos, 2022. "Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment," Energies, MDPI, vol. 15(21), pages 1-23, October.
    10. Guedes do Nascimento, Leomário & Costa Monteiro, Luciane Pimentel & de Cássia Colman Simões, Rita & Prata, Diego Martinez, 2023. "Eco-efficiency analysis and intensification of the biodiesel production process through vapor recompression strategy," Energy, Elsevier, vol. 275(C).
    11. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Xu, Liang & Liu, Yangyang & Bai, Wenshuai & Tan, Zhaoyang & Xue, Wei, 2022. "Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation," Energy, Elsevier, vol. 239(PA).
    13. Kim, Jung-Hun & Jung, Sungyup & Lee, Taewoo & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Thermo-chemical disposal of plastic waste from end-of-life vehicles (ELVs) using CO2," Energy, Elsevier, vol. 290(C).
    14. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    15. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    16. Dmitry A. Sladkovskiy & Dmitry Yu. Murzin, 2022. "Integrated Power Systems for Oil Refinery and Petrochemical Processes," Energies, MDPI, vol. 15(17), pages 1-20, September.
    17. Na Xu & Mifen Cui & Zhuxiu Zhang & Jihai Tang & Xu Qiao, 2022. "Quest for the Co-Pyrolysis Behavior of Rice Husk and Cresol Distillation Residue: Interaction, Gas Evolution and Kinetics," Energies, MDPI, vol. 15(6), pages 1-13, March.
    18. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.