IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics0360544219315178.html
   My bibliography  Save this article

Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran

Author

Listed:
  • Mostashari-Rad, Fatemeh
  • Nabavi-Pelesaraei, Ashkan
  • Soheilifard, Farshad
  • Hosseini-Fashami, Fatemeh
  • Chau, Kwok-wing

Abstract

The objective of this study is to comprehensively optimize energy usage and determine mitigation of greenhouse gas (GHG) emissions in agricultural and horticultural crops of Guilan Province, Iran. For this purpose, required data are collected from eggplant, garlic, tea, hazelnut, kiwifruit and tangerine producers through questionnaires. In this study, GHG emissions are investigated under both On-Farm and Off-Farm sectors. Data envelopment analysis method is employed for the optimization of GHG emissions and energy flow. The highest and lowest energy consumption are related to tea and kiwifruit production, respectively. Results show that kiwifruit and eggplant have the highest scores in technical efficiency whilst tangerine and tea have the highest values in pure technical efficiency. The largest amount of energy is saved in kiwifruit orchards with 8316.29 MJ ha−1. Nitrogen fertilizer and diesel fuel have the topmost energy saving potential in most crops. Kiwifruit orchards have the highest potential for mitigation of GHG gas emissions (520.79 kg CO2 eq. ha−1). Results show that an appropriate usage of nitrogen fertilizer and replacement by organic fertilizer will mitigate GHG emissions as well as energy consumption. It can be concluded that GHG emissions can be mitigated by energy optimization in all the studied crops.

Suggested Citation

  • Mostashari-Rad, Fatemeh & Nabavi-Pelesaraei, Ashkan & Soheilifard, Farshad & Hosseini-Fashami, Fatemeh & Chau, Kwok-wing, 2019. "Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315178
    DOI: 10.1016/j.energy.2019.07.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219315178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guoxuan & Wang, Shuai & Zhao, Jiangang & Qi, Huaqing & Ma, Zhaoyuan & Cui, Peizhe & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong, 2020. "Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming," Energy, Elsevier, vol. 199(C).
    2. Li, Ximei & Gao, Jianmin & You, Shi & Zheng, Yi & Zhang, Yu & Du, Qian & Xie, Min & Qin, Yukun, 2022. "Optimal design and techno-economic analysis of renewable-based multi-carrier energy systems for industries: A case study of a food factory in China," Energy, Elsevier, vol. 244(PB).
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Ahmed, Salman & Mikulik, Jerzy, 2020. "Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems," Energy, Elsevier, vol. 210(C).
    4. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    5. Hong, Jae-Dong & Mwakalonge, Judith L., 2020. "Biofuel logistics network scheme design with combined data envelopment analysis approach," Energy, Elsevier, vol. 209(C).
    6. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
    7. Tiwari, Aviral Kumar & Boachie, Micheal Kofi & Suleman, Muhammed Tahir & Gupta, Rangan, 2021. "Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks," Energy, Elsevier, vol. 219(C).
    8. Kumar Ganti, Praful & Naik, Hrushikesh & Kanungo Barada, Mohanty, 2022. "Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree appr," Energy, Elsevier, vol. 244(PA).
    9. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    10. Garofalo, Pasquale & Mastrorilli, Marcello & Ventrella, Domenico & Vonella, Alessandro Vittorio & Campi, Pasquale, 2020. "Modelling the suitability of energy crops through a fuzzy-based system approach: The case of sugar beet in the bioethanol supply chain," Energy, Elsevier, vol. 196(C).
    11. Hessampour, Reza & Bastani, Aboubakr & Hassani, Mehrdad & Failla, Sabina & Vaverková, Magdalena Daria & Halog, Anthony, 2023. "Joint life cycle assessment and data envelopment analysis for the benchmarking of energy, exergy, environmental effects, and water footprint in the canned apple supply chain," Energy, Elsevier, vol. 278(C).
    12. Shirzad, Hossein & Barati, Ali Akbar & Ehteshammajd, Shaghayegh & Goli, Imaneh & Siamian, Narges & Moghaddam, Saghi Movahhed & Pour, Mahdad & Tan, Rong & Janečková, Kristina & Sklenička, Petr & Azadi,, 2022. "Agricultural land tenure system in Iran: An overview," Land Use Policy, Elsevier, vol. 123(C).
    13. Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
    14. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    15. Yeşim Aytop, 2023. "Determination of Energy Consumption and Technical Efficiency of Cotton Farms in Türkiye," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    16. Chen, Qiuwen & Ma, Xiaohan & Hu, Jiayu & Zhang, Xiaohong, 2023. "Comparison of comprehensive performance of kiwifruit production in China, Iran, and Italy based on emergy and carbon emissions," Ecological Modelling, Elsevier, vol. 483(C).
    17. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    18. Zhang, Wenqi & Zhou, Renjie & Gao, Shuaifei & Wang, Yinfeng & Zhu, Lin & Gao, Ying & Zhu, Yuezhao, 2022. "Investigation on cogasification and melting behavior of ash-rich biomass solid waste and Ca-rich petrochemical sludge pyrolysis residue in CO2 atmosphere," Energy, Elsevier, vol. 239(PB).
    19. Guang Chen & Yue Deng & Apurbo Sarkar & Zhengbing Wang, 2022. "An Integrated Assessment of Different Types of Environment-Friendly Technological Progress and Their Spatial Spillover Effects in the Chinese Agriculture Sector," Agriculture, MDPI, vol. 12(7), pages 1-24, July.
    20. Khanali, Majid & Akram, Asadollah & Behzadi, Javad & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2021. "Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm," Applied Energy, Elsevier, vol. 284(C).
    21. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.