IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221021411.html
   My bibliography  Save this article

Research on the impact of financial transmission rights on transmission expansion: A system dynamics model

Author

Listed:
  • Wu, Zhongqun
  • Zheng, Ruijin

Abstract

With the development of the power market, the traditional transmission congestion management method of using a power generation plan is no longer applicable, and congestion management using financial transmission rights (FTRs) is becoming a trend. However, after the introduction of FTRs, the profit from transmission lines changes, and those changes affect the expansion of and investment in transmission lines. Therefore, this paper constructs a system dynamics analysis model and presents specific calculation methods and a case analysis. Load growth, construction time, congestion, the step nature of the bid from generating units, and relative changes in the locational marginal prices (LMPs) at the sink and source nodes under the expansion and non-expansion scenarios are considered for a simulation calculation of net present value of transmission expansion project. Sensitivity analyses of factors such as generator bid prices, transmission expansion costs, the proportion of expansion capacity to transmission congestion, and the market maturity of FTRs are analysed. The results show that decision-making on the basis of transmission expansion investment in combination with FTRs is feasible and such decision-making can reflect the value of transmission expansion via the market, which conforms to market rules. That decision-making method is very important for the marketisation of power transmission.

Suggested Citation

  • Wu, Zhongqun & Zheng, Ruijin, 2022. "Research on the impact of financial transmission rights on transmission expansion: A system dynamics model," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021411
    DOI: 10.1016/j.energy.2021.121893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xingping & Liang, Yanni & Liu, Wenfeng, 2017. "Pricing model for the charging of electric vehicles based on system dynamics in Beijing," Energy, Elsevier, vol. 119(C), pages 218-234.
    2. Ruiz, Erix & Rosellón, Juan, 2012. "Transmission investment in the Peruvian electricity market: Theory and applications," Energy Policy, Elsevier, vol. 47(C), pages 238-245.
    3. He, Y.X. & Jiao, J. & Chen, R.J. & Shu, H., 2018. "The optimization of Chinese power grid investment based on transmission and distribution tariff policy: A system dynamics approach," Energy Policy, Elsevier, vol. 113(C), pages 112-122.
    4. Pereira, Adelino J.C. & Saraiva, João Tomé, 2011. "Generation expansion planning (GEP) – A long-term approach using system dynamics and genetic algorithms (GAs)," Energy, Elsevier, vol. 36(8), pages 5180-5199.
    5. Adamson, Seabron & Noe, Thomas & Parker, Geoffrey, 2010. "Efficiency of financial transmission rights markets in centrally coordinated periodic auctions," Energy Economics, Elsevier, vol. 32(4), pages 771-778, July.
    6. Chamorro, José M. & Abadie, Luis M. & de Neufville, Richard & Ilić, Marija, 2012. "Market-based valuation of transmission network expansion. A heuristic application in GB," Energy, Elsevier, vol. 44(1), pages 302-320.
    7. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    8. Kristiansen, T. & Rosellón, J., 2010. "Merchant electricity transmission expansion: A European case study," Energy, Elsevier, vol. 35(10), pages 4107-4115.
    9. Richard Green & Danny Pudjianto & Iain Staffell & Goran Strbac, 2016. "Market Design for Long-Distance Trade in Renewable Electricity," The Energy Journal, , vol. 37(2_suppl), pages 5-22, June.
    10. Wang, Yongli & Zhang, Fuli & Zhang, Yuanyuan & Wang, Xiaohai & Fan, Lisha & Song, Fuhao & Ma, Yuze & Wang, Shuo, 2019. "Chinese power-grid financial capacity based on transmission and distribution tariff policy: A system dynamics approach," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    11. Petropoulos, Georgios & Willems, Bert, 2020. "Long-term transmission rights and dynamic efficiency," Energy Economics, Elsevier, vol. 88(C).
    12. Yuan, Jiahai & Wang, Yang & Zhang, Weirong & Zhao, Changhong & Liu, Qian & Shen, Xinyi & Zhang, Kai & Dong, Liansai, 2017. "Will recent boom in coal power lead to a bust in China? A micro-economic analysis," Energy Policy, Elsevier, vol. 108(C), pages 645-656.
    13. Wu, Zhongqun & Sun, Hongxia & Du, Yihang, 2014. "A large amount of idle capacity under rapid expansion: Policy analysis on the dilemma of wind power utilization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 271-277.
    14. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
    15. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    16. Atkinson, Travis R. & Preckel, Paul V. & Gotham, Douglas, 2021. "Long-term investment planning for the electricity sector in Small Island Developing States: Case study for Jamaica," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    2. Wang, Yongli & Zhou, Minhan & Zhang, Fuli & Zhang, Yuli & Ma, Yuze & Dong, Huanran & Zhang, Danyang & Liu, Lin, 2021. "Chinese grid investment based on transmission and distribution tariff policy: An optimal coordination between capacity and demand," Energy, Elsevier, vol. 219(C).
    3. Darya Pyatkina & Tamara Shcherbina & Vadim Samusenkov & Irina Razinkina & Mariusz Sroka, 2021. "Modeling and Management of Power Supply Enterprises’ Cash Flows," Energies, MDPI, vol. 14(4), pages 1-17, February.
    4. Pollitt, M. G., 2023. "Locational Marginal Prices (LMPs) for Electricity in Europe? The Untold Story," Cambridge Working Papers in Economics 2352, Faculty of Economics, University of Cambridge.
    5. Izzet Alp Gul & Gülgün Kayakutlu & M. Özgür Kayalica, 2020. "Risk Analysis in Renewable Energy System (RES) Investment for a Developing Country: A Case Study in Pakistan," Arthaniti: Journal of Economic Theory and Practice, , vol. 19(2), pages 204-223, December.
    6. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    7. Dmitry Borisoglebsky & Liz Varga, 2019. "A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    8. Sen Guo & Wenyue Zhang & Xiao Gao, 2020. "Business Risk Evaluation of Electricity Retail Company in China Using a Hybrid MCDM Method," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    9. Deng, Shi-Jie & Oren, Shmuel & Meliopoulos, A.P., 2010. "The inherent inefficiency of simultaneously feasible financial transmission rights auctions," Energy Economics, Elsevier, vol. 32(4), pages 779-785, July.
    10. Lei Gao & Zhen-Yu Zhao & Cui Li, 2022. "An Investment Decision-Making Approach for Power Grid Projects: A Multi-Objective Optimization Model," Energies, MDPI, vol. 15(3), pages 1-20, February.
    11. Michael G. Pollitt, 2011. "Lessons from the History of Independent System Operators in the Energy Sector, with applications to the Water Sector," Working Papers EPRG 1125, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
    13. Rosellon, Juan & Tregear, Juan & Zenon, Eric, 2010. "El modelo HRV para expansión óptima de redes de transmisión: una aplicación a la red eléctrica de Ontario [The HRV Model for the Optimal Expansion of Transmission Networks: an Application to the On," MPRA Paper 26471, University Library of Munich, Germany.
    14. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    16. Hu, Yu & Chi, Yuanying & Zhao, Hao & Zhou, Wenbing, 2022. "The development of renewable energy industry under renewable portfolio standards: From the perspective of provincial resource differences," Energy Policy, Elsevier, vol. 170(C).
    17. Yilmaz, S. & Rinaldi, A. & Patel, M.K., 2020. "DSM interactions: What is the impact of appliance energy efficiency measures on the demand response (peak load management)?," Energy Policy, Elsevier, vol. 139(C).
    18. Xu, Xiaomin & Niu, Dongxiao & Xiao, Bowen & Guo, Xiaodan & Zhang, Lihui & Wang, Keke, 2020. "Policy analysis for grid parity of wind power generation in China," Energy Policy, Elsevier, vol. 138(C).
    19. Gauthier, Geneviève & Godin, Frédéric & Trudeau, Gabrielle, 2023. "Pricing inconsistency between the futures and Financial Transmission Right markets in North America," Energy Economics, Elsevier, vol. 126(C).
    20. Zenón, Eric & Rosellón, Juan, 2017. "Optimal transmission planning under the Mexican new electricity market," Energy Policy, Elsevier, vol. 104(C), pages 349-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.