IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221019563.html
   My bibliography  Save this article

Energy-efficient gas-fired tumble dryer with adsorption thermal storage

Author

Listed:
  • El Fil, Bachir
  • Garimella, Srinivas

Abstract

Improvements to the energy efficiency of open-cycle tumble dryers have the potential to substantially reduce CO2 emissions. A novel adsorption-based thermal energy storage system is integrated into a gas-fired dryer here. An adsorbent bed is used to capture waste heat from the exhaust stream, store, and reuse it in the current and subsequent drying cycles. A heat and mass transfer model is developed to capture the dynamics of the thermal storage system, and validated experimentally on a 11.33-kg capacity gas-fired tumble dryer. The model predicts the inlet and exit temperatures of the drum with average absolute deviations of 7.1% and 8.4%, respectively. The analysis indicates that an 8.5-kg silica gel adsorption bed can yield a specific moisture extraction ratio of 1.166 kWhkgw−1, a 22% reduction over the energy consumption of the conventional gas-fired tumble dryer. In addition, drying time is reduced by 19%. This technology can be implemented in a variety of dryers to take advantage of the waste heat in the exhaust stream.

Suggested Citation

  • El Fil, Bachir & Garimella, Srinivas, 2022. "Energy-efficient gas-fired tumble dryer with adsorption thermal storage," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221019563
    DOI: 10.1016/j.energy.2021.121708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yadav, V. & Moon, C.G., 2008. "Fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(2-3), pages 143-158, February.
    2. Bansal, Pradeep & Sharma, Karishma & Islam, Sumana, 2010. "Thermal analysis of a new concept in a household clothes tumbler dryer," Applied Energy, Elsevier, vol. 87(5), pages 1562-1571, May.
    3. Yadav, V. & Moon, C.G., 2008. "Modelling and experimentation for the fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(5), pages 404-419, May.
    4. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    5. Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
    6. Lambert, A.J.D. & Spruit, F.P.M. & Claus, J., 1991. "Modelling as a tool for evaluating the effects of energy-saving measures. Case study: A tumbler drier," Applied Energy, Elsevier, vol. 38(1), pages 33-47.
    7. Patel, Viral K. & Gluesenkamp, Kyle R. & Goodman, Dakota & Gehl, Anthony, 2018. "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," Applied Energy, Elsevier, vol. 217(C), pages 221-232.
    8. Cranston, Jonathan & Askalany, Ahmed & Santori, Giulio, 2019. "Efficient drying in washer dryers by combining sorption and heat pumping," Energy, Elsevier, vol. 183(C), pages 683-692.
    9. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    10. Ng, Ah Bing & Deng, Shiming, 2008. "A new termination control method for a clothes drying process in a clothes dryer," Applied Energy, Elsevier, vol. 85(9), pages 818-829, September.
    11. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    12. Goh, Li Jin & Othman, Mohd Yusof & Mat, Sohif & Ruslan, Hafidz & Sopian, Kamaruzzaman, 2011. "Review of heat pump systems for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4788-4796.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dupuis, Eric D. & Momen, Ayyoub M. & Patel, Viral K. & Shahab, Shima, 2019. "Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process," Applied Energy, Elsevier, vol. 235(C), pages 451-462.
    2. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    3. Ogonowski, Zbigniew, 2011. "Drying control system for spray booth with optimization of fuel consumption," Applied Energy, Elsevier, vol. 88(5), pages 1586-1595, May.
    4. Stawreberg, Lena & Nilsson, Lars, 2013. "Potential energy savings made by using a specific control strategy when tumble drying small loads," Applied Energy, Elsevier, vol. 102(C), pages 484-491.
    5. Patel, Viral K. & Gluesenkamp, Kyle R. & Goodman, Dakota & Gehl, Anthony, 2018. "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," Applied Energy, Elsevier, vol. 217(C), pages 221-232.
    6. Ma, Su-Sheng & Tseng, Ching-Yi & Jian, You-Ren & Yang, Tai-Her & Chen, Sih-Li, 2018. "Utilization of waste heat for energy conservation in domestic dryers," Energy, Elsevier, vol. 162(C), pages 185-199.
    7. Singh, Panna Lal, 2011. "Silk cocoon drying in forced convection type solar dryer," Applied Energy, Elsevier, vol. 88(5), pages 1720-1726, May.
    8. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    9. Choi, JunYoung & Lee, DongChan & Park, Myeong Hyeon & Lee, Yongju & Kim, Yongchan, 2021. "Effects of compressor frequency and heat exchanger geometry on dynamic performance characteristics of heat pump dryers," Energy, Elsevier, vol. 235(C).
    10. Bansal, Pradeep & Mohabir, Amar & Miller, William, 2016. "A novel method to determine air leakage in heat pump clothes dryers," Energy, Elsevier, vol. 96(C), pages 1-7.
    11. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    12. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    13. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    14. Askalany, Ahmed A. & Uddin, Kutub & Saha, Bidyut B. & Sultan, Muhammad & Santori, Giulio, 2022. "Water desalination by silica supported ionic liquid: Adsorption kinetics and system modeling," Energy, Elsevier, vol. 239(PD).
    15. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    16. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    17. Othman, M.Y. & Hamid, S.A. & Tabook, M.A.S. & Sopian, K. & Roslan, M.H. & Ibarahim, Z., 2016. "Performance analysis of PV/T Combi with water and air heating system: An experimental study," Renewable Energy, Elsevier, vol. 86(C), pages 716-722.
    18. Yadav, V. & Moon, C.G., 2008. "Fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(2-3), pages 143-158, February.
    19. Chorowski, Maciej & Pyrka, Piotr, 2015. "Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration," Energy, Elsevier, vol. 92(P2), pages 221-229.
    20. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221019563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.