IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v96y2016icp1-7.html
   My bibliography  Save this article

A novel method to determine air leakage in heat pump clothes dryers

Author

Listed:
  • Bansal, Pradeep
  • Mohabir, Amar
  • Miller, William

Abstract

Although heat pump clothes dryers offer the potential to save a significant amount of energy as compared to conventional vented electric dryers; they are prone to air leakage that can limit their efficiency gain. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The method follows an ASTM (American Society of Testing and Materials) standard, which is used to determine air leakage area in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. The procedure presents a framework that determines and quantifies major components contributing to leakage in HPCDs. The novel method can improve component design features, resulting in more efficient HPCD systems.

Suggested Citation

  • Bansal, Pradeep & Mohabir, Amar & Miller, William, 2016. "A novel method to determine air leakage in heat pump clothes dryers," Energy, Elsevier, vol. 96(C), pages 1-7.
  • Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:1-7
    DOI: 10.1016/j.energy.2015.12.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501693X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lambert, A.J.D. & Spruit, F.P.M. & Claus, J., 1991. "Modelling as a tool for evaluating the effects of energy-saving measures. Case study: A tumbler drier," Applied Energy, Elsevier, vol. 38(1), pages 33-47.
    2. Bansal, Pradeep & Sharma, Karishma & Islam, Sumana, 2010. "Thermal analysis of a new concept in a household clothes tumbler dryer," Applied Energy, Elsevier, vol. 87(5), pages 1562-1571, May.
    3. Rezk, Kamal & Forsberg, Jan, 2011. "Geometry development of the internal duct system of a heat pump tumble dryer based on fluid mechanic parameters from a CFD software," Applied Energy, Elsevier, vol. 88(5), pages 1596-1605, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    2. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    3. Czopek, Dorota & Gryboś, Dominik & Leszczyński, Jacek & Wiciak, Jerzy, 2022. "Identification of energy wastes through sound analysis in compressed air systems," Energy, Elsevier, vol. 239(PB).
    4. Hua Wang & Jijun Liu & Zhonghong Wu & Jia Liu & Lu Yi & Yixue Li & Siqi Li & Meizhi Wang, 2023. "Research on the Flexible Heating Model of an Air-Source Heat Pump System in Nursery Pig Houses," Agriculture, MDPI, vol. 13(5), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Fil, Bachir & Garimella, Srinivas, 2022. "Energy-efficient gas-fired tumble dryer with adsorption thermal storage," Energy, Elsevier, vol. 239(PA).
    2. Ma, Su-Sheng & Tseng, Ching-Yi & Jian, You-Ren & Yang, Tai-Her & Chen, Sih-Li, 2018. "Utilization of waste heat for energy conservation in domestic dryers," Energy, Elsevier, vol. 162(C), pages 185-199.
    3. De Bellis, Fabio & Catalano, Luciano A., 2012. "CFD optimization of an immersed particle heat exchanger," Applied Energy, Elsevier, vol. 97(C), pages 841-848.
    4. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    5. Rödder, Maximilian & Frank, Lena & Kirschner, Daniel & Neef, Matthias & Adam, Mario, 2018. "EnergiBUS4home – Sustainable energy resourcing in low-energy buildings," Energy, Elsevier, vol. 159(C), pages 638-647.
    6. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
    7. Yadav, V. & Moon, C.G., 2008. "Fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(2-3), pages 143-158, February.
    8. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    9. Singh, Panna Lal, 2011. "Silk cocoon drying in forced convection type solar dryer," Applied Energy, Elsevier, vol. 88(5), pages 1720-1726, May.
    10. Rezk, Kamal & Forsberg, Jan, 2011. "Geometry development of the internal duct system of a heat pump tumble dryer based on fluid mechanic parameters from a CFD software," Applied Energy, Elsevier, vol. 88(5), pages 1596-1605, May.
    11. Stawreberg, Lena & Nilsson, Lars, 2013. "Potential energy savings made by using a specific control strategy when tumble drying small loads," Applied Energy, Elsevier, vol. 102(C), pages 484-491.
    12. Bansal, Pradeep & Sharma, Karishma & Islam, Sumana, 2010. "Thermal analysis of a new concept in a household clothes tumbler dryer," Applied Energy, Elsevier, vol. 87(5), pages 1562-1571, May.
    13. Tomasz Mołczan & Piotr Cyklis, 2023. "Impact of the Evaporation Temperature on the Air Drying Rate for a Finned Heat Exchanger," Energies, MDPI, vol. 16(5), pages 1-14, February.
    14. Yadav, V. & Moon, C.G., 2008. "Modelling and experimentation for the fabric-drying process in domestic dryers," Applied Energy, Elsevier, vol. 85(5), pages 404-419, May.
    15. Patel, Viral K. & Gluesenkamp, Kyle R. & Goodman, Dakota & Gehl, Anthony, 2018. "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," Applied Energy, Elsevier, vol. 217(C), pages 221-232.
    16. Ogonowski, Zbigniew, 2011. "Drying control system for spray booth with optimization of fuel consumption," Applied Energy, Elsevier, vol. 88(5), pages 1586-1595, May.
    17. Dupuis, Eric D. & Momen, Ayyoub M. & Patel, Viral K. & Shahab, Shima, 2019. "Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process," Applied Energy, Elsevier, vol. 235(C), pages 451-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:96:y:2016:i:c:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.