An Experimental Study on Transient Response of a Hybrid Thermoelectric–Photovoltaic System with Beam Splitter
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
- Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
- Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
- Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
- Wahyu H. Piarah & Zuryati Djafar & Syafaruddin & Mustofa, 2019. "The Characterization of a Spectrum Splitter of TechSpec AOI 50.0mm Square Hot and Cold Mirrors Using a Halogen Light for a Photovoltaic-Thermoelectric Generator Hybrid," Energies, MDPI, vol. 12(3), pages 1-13, January.
- Da, Yun & Xuan, Yimin & Li, Qiang, 2016. "From light trapping to solar energy utilization: A novel photovoltaic–thermoelectric hybrid system to fully utilize solar spectrum," Energy, Elsevier, vol. 95(C), pages 200-210.
- Pereira, A. & Caroff, T. & Lorin, G. & Baffie, T. & Romanjek, K. & Vesin, S. & Kusiaku, K. & Duchemin, H. & Salvador, V. & Miloud-Ali, N. & Aixala, L. & Simon, J., 2015. "High temperature solar thermoelectric generator – Indoor characterization method and modeling," Energy, Elsevier, vol. 84(C), pages 485-492.
- Al-Nimr, Moh’d A. & Tashtoush, Bourhan M. & Khasawneh, Mohammad A. & Al-Keyyam, Ibrahim, 2017. "A hybrid concentrated solar thermal collector/thermo-electric generation system," Energy, Elsevier, vol. 134(C), pages 1001-1012.
- Mahmoudinezhad, S. & Cotfas, P.A. & Cotfas, D.T. & Rosendahl, L.A. & Rezania, A., 2020. "Response of thermoelectric generators to Bi2Te3 and Zn4Sb3 energy harvester materials under variant solar radiation," Renewable Energy, Elsevier, vol. 146(C), pages 2488-2498.
- Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Yi-Peng & Yang, Pei-Xin & Wang, Liang-Xu & Xu, Jia-Chen & He, Ya-Ling, 2023. "Full spectrum photon management of photonic crystal-based aerogels to achieve the multiscale multiphysics regulations and optimizations of PV-TE/T systems," Renewable Energy, Elsevier, vol. 217(C).
- Cotfas, D.T. & Enesca, A. & Cotfas, P.A., 2024. "Enhancing the performance of the solar thermoelectric generator in unconcentrated and concentrated light," Renewable Energy, Elsevier, vol. 221(C).
- Abdelkader Rjafallah & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2022. "Legs Geometry Influence on the Performance of the Thermoelectric Module," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
- Mahmoudinezhad, S. & Cotfas, D.T. & Cotfas, P.A. & Skjølstrup, Enok J.H. & Pedersen, K. & Rosendahl, L. & Rezania, A., 2022. "Experimental investigation on spectrum beam splitting photovoltaic–thermoelectric generator under moderate solar concentrations," Energy, Elsevier, vol. 238(PC).
- Yin, Ershuai & Li, Qiang, 2023. "High-efficiency dynamic lossless coupling of a spectrum splitting photovoltaic-thermoelectric system," Energy, Elsevier, vol. 282(C).
- Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.
- Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
- Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
- Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
- He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
- He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
- Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
- Mahmoudinezhad, S. & Rezania, A. & Cotfas, P.A. & Cotfas, D.T. & Rosendahl, L.A., 2019. "Transient behavior of concentrated solar oxide thermoelectric generator," Energy, Elsevier, vol. 168(C), pages 823-832.
- Hazama, Hirofumi & Masuoka, Yumi & Suzumura, Akitoshi & Matsubara, Masato & Tajima, Shin & Asahi, Ryoji, 2018. "Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency," Applied Energy, Elsevier, vol. 226(C), pages 381-388.
- Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
- Hu, Cong & Fu, Tong & Liang, Tao & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Efficiency enhancement of an updated solar-driven intermediate band thermoradiative device," Energy, Elsevier, vol. 228(C).
- Maduabuchi, Chika C. & Ejenakevwe, Kevwe A. & Mgbemene, Chigbo A., 2021. "Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator," Renewable Energy, Elsevier, vol. 168(C), pages 1189-1206.
- Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
- Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
- Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
- Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
More about this item
Keywords
thermoelectric module; photovoltaic cell; spectrum beam splitting; hybrid energy conversion; transient response; maximum power;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8129-:d:694787. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.