IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221020764.html
   My bibliography  Save this article

Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation

Author

Listed:
  • Xu, Tianhao
  • Humire, Emma Nyholm
  • Trevisan, Silvia
  • Ignatowicz, Monika
  • Sawalha, Samer
  • Chiu, Justin NW.

Abstract

This paper investigates ellipsoid-shaped macro-encapsulated phase change material (PCM) on a component scale. The selected PCM is a paraffin-based commercial material, namely ATP60; differential scanning calorimetry and transient plane source method are used to measure ATP60's thermo-physical properties. A 0.382 m3 latent heat thermal energy storage (LHTES) component has been built and experimentally characterized. The temperature measurement results indicate that a thermocline was retained in the packed bed region during charging/discharging processes. The experimental characterization shows that increasing the temperature difference between the heat transfer fluid (HTF) inlet temperature and phase-change temperature by 20 K can shorten the completion time of discharge by 65%, and increasing HTF inlet flowrate from 0.15 m3/h (Re = 77) to 0.5 m3/h (Re = 256) can shorten the completion time of charge by 51%. Furthermore, a one-dimensional packed bed model using source-based enthalpy method was developed and validated by comparison to experimental results, showing discrepancies in the accumulated storage capacity within 6.6% between simulation and experiment when the Reynolds number of the HTF inlet flow ranges between 90 and 922. Compared with a conventional capsule shaped in 69-mm-diameter and 750-mm-long cylinders, the ellipsoidal capsule shows 60% less completion time of discharge but 23% lower storage capacity. Overall, this work demonstrates a combined experimental and numerical characterization approach for applying novel macro-encapsulated PCM geometries for heating-oriented LHTES.

Suggested Citation

  • Xu, Tianhao & Humire, Emma Nyholm & Trevisan, Silvia & Ignatowicz, Monika & Sawalha, Samer & Chiu, Justin NW., 2022. "Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020764
    DOI: 10.1016/j.energy.2021.121828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221020764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calvet, Nicolas & Py, Xavier & Olivès, Régis & Bédécarrats, Jean-Pierre & Dumas, Jean-Pierre & Jay, Frédéric, 2013. "Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity," Energy, Elsevier, vol. 55(C), pages 956-964.
    2. Felix Regin, A. & Solanki, S.C. & Saini, J.S., 2009. "An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation," Renewable Energy, Elsevier, vol. 34(7), pages 1765-1773.
    3. Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
    4. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    5. Peng, Benli & Huang, Guanghan & Wang, Pengtao & Li, Wenming & Chang, Wei & Ma, Jiaxuan & Li, Chen, 2019. "Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems," Energy, Elsevier, vol. 172(C), pages 580-591.
    6. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    7. Zhang, Yichi & Johansson, Pär & Kalagasidis, Angela Sasic, 2021. "Techno-economic assessment of thermal energy storage technologies for demand-side management in low-temperature individual heating systems," Energy, Elsevier, vol. 236(C).
    8. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Goswami, D. Yogi & Stefanakos, Elias, 2018. "Influence of design on performance of a latent heat storage system at high temperatures," Applied Energy, Elsevier, vol. 224(C), pages 220-229.
    9. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    10. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    11. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cáceres, G. & Segal, R. & Pitié, F., 2014. "Latent heat storage with tubular-encapsulated phase change materials (PCMs)," Energy, Elsevier, vol. 76(C), pages 66-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
    2. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    3. Sathishkumar, A. & Cheralathan, M., 2023. "Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: An experimental study," Energy, Elsevier, vol. 263(PB).
    4. Cheng, Jiaji & Kang, Moyun & Liu, Yuqi & Niu, Shaoshuai & Guan, Yu & Qu, Wenjuan & Li, Shaoxiang, 2022. "The preparation and characterization of thermal expansion capric acid microcapsules for controlling temperature," Energy, Elsevier, vol. 261(PB).
    5. Tian, Yang & Liu, Xianglei & Zheng, Hangbin & Xu, Qiao & Zhu, Zhonghui & Luo, Qinyang & Song, Chao & Gao, Ke & Yao, Haichen & Dang, Chunzhuo & Xuan, Yimin, 2022. "Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation," Energy, Elsevier, vol. 245(C).
    6. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    7. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Tianhao & Humire, Emma Nyholm & Chiu, Justin Ning-Wei & Sawalha, Samer, 2020. "Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems," Applied Energy, Elsevier, vol. 278(C).
    2. McKenna, P. & Turner, W.J.N. & Finn, D.P., 2018. "Geocooling with integrated PCM thermal energy storage in a commercial building," Energy, Elsevier, vol. 144(C), pages 865-876.
    3. Alam, Tanvir E. & Dhau, Jaspreet S. & Goswami, D. Yogi & Stefanakos, Elias, 2015. "Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems," Applied Energy, Elsevier, vol. 154(C), pages 92-101.
    4. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    6. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    7. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    8. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    9. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    10. Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
    11. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    12. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    13. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    14. Zhang, Tao & Huo, Dongxin & Wang, Chengyao & Shi, Zhengrong, 2023. "Review of the modeling approaches of phase change processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Zhong, Yajuan & Zhao, Bingchen & Lin, Jun & Zhang, Feng & Wang, Haoran & Zhu, Zhiyong & Dai, Zhimin, 2019. "Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer," Renewable Energy, Elsevier, vol. 133(C), pages 240-247.
    16. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    17. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.
    18. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis of a cascaded cold storage unit using multiple PCMs," Energy, Elsevier, vol. 143(C), pages 448-457.
    19. Gustavo Cáceres & Karina Fullenkamp & Macarena Montané & Krzysztof Naplocha & Anna Dmitruk, 2017. "Encapsulated Nitrates Phase Change Material Selection for Use as Thermal Storage and Heat Transfer Materials at High Temperature in Concentrated Solar Power Plants," Energies, MDPI, vol. 10(9), pages 1-21, September.
    20. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.