IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221020685.html
   My bibliography  Save this article

Catalytic potential of low-cost natural zeolite and influence of various pretreatments of biomass on pyro-oil up-gradation during co-pyrolysis with scrap rubber tires

Author

Listed:
  • Khan, Shoaib Raza
  • Zeeshan, Muhammad

Abstract

This study investigates the influence of low-cost natural zeolite (NZ) catalyst, metallic content and various pretreatments of rice straw (RS) on quality and quantity of oil derived from co-pyrolysis and catalytic co-pyrolysis of RS and scrap rubber tire (SRT). Oil obtained from co-pyrolysis of combined acid-washed and torrefied RS (WT-RS) and SRT (WT-RS/SRT) had 41% less oxygenates, 17% more hydrocarbons (HCs) and a significant amount of levoglucosan compared to the combination of raw RS and SRT (R-RS/SRT). Besides, char from WT-RS/SRT combination had more HHV (30.15 MJ/kg) than that of R-RS/SRT combination (26.85 MJ/kg). NZ incorporation into co-pyrolysis enhanced deoxygenation by 34% for catalytic combination of R-RS/SRT/NZ than non-catalytic co-pyrolysis of R-RS/SRT combination whilst the combination of WT-RS/SRT/NZ encountered 77.27%, 61.53% and 65.51% more deoxygenation than R-RS/SRT, WT-RS/SRT and R-RS/SRT/NZ combinations, respectively. An increase in HCs was found to be 40% and 31.25% for WT-RS/SRT/NZ contrary to WT-RS/SRT and R-RS/SRT/NZ, respectively. Additionally, 69.23% more mono aromatics along with more valuable gaseous composition were obtained in WT-RS/SRT/NZ than R-RS/SRT/NZ. HHV and physical characteristics of oil were superior for WT-RS/SRT/NZ. Results showed co-pyrolysis of pretreated RS-SRT as an effective route to improve product quality, which was further improved by the catalyst incorporation.

Suggested Citation

  • Khan, Shoaib Raza & Zeeshan, Muhammad, 2022. "Catalytic potential of low-cost natural zeolite and influence of various pretreatments of biomass on pyro-oil up-gradation during co-pyrolysis with scrap rubber tires," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020685
    DOI: 10.1016/j.energy.2021.121820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221020685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nizami, A.S. & Ouda, O.K.M. & Rehan, M. & El-Maghraby, A.M.O. & Gardy, J. & Hassanpour, A. & Kumar, S. & Ismail, I.M.I., 2016. "The potential of Saudi Arabian natural zeolites in energy recovery technologies," Energy, Elsevier, vol. 108(C), pages 162-171.
    2. Burra, K.G. & Gupta, A.K., 2018. "Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes," Applied Energy, Elsevier, vol. 220(C), pages 408-418.
    3. Dimitriou, Ioanna & Goldingay, Harry & Bridgwater, Anthony V., 2018. "Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 160-175.
    4. Haddad, Khouloud & Jeguirim, Mejdi & Jellali, Salah & Guizani, Chamseddine & Delmotte, Luc & Bennici, Simona & Limousy, Lionel, 2017. "Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 134(C), pages 10-23.
    5. Kumar, Ashwani & Kumar, Kapil & Kaushik, Naresh & Sharma, Satyawati & Mishra, Saroj, 2010. "Renewable energy in India: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2434-2442, October.
    6. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    7. Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Hao & Cheng, Shuo & Hungwe, Douglas & Yoshikawa, Kunio & Takahashi, Fumitake, 2022. "Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors," Applied Energy, Elsevier, vol. 327(C).
    2. Angel Alcazar-Ruiz & Fernando Dorado & Luz Sanchez-Silva, 2022. "Influence of Temperature and Residence Time on Torrefaction Coupled to Fast Pyrolysis for Valorizing Agricultural Waste," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    3. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    4. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    5. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    6. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    7. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    8. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    9. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    10. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    11. Agnes Csiszarik-Kocsir, 2017. "How to finance renewable energy projects – facts and trends," Proceedings of FIKUSZ 2017, in: Monika Fodor (ed.), Proceedings of FIKUSZ '17, pages 44-56, Óbuda University, Keleti Faculty of Business and Management.
    12. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    13. Sergejus Lebedevas & Laurencas Raslavičius, 2021. "Prognostic Assessment of the Performance Parameters for the Industrial Diesel Engines Operated with Microalgae Oil," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    14. Błażej Gaze & Paulina Wojtko & Bernard Knutel & Przemysław Kobel & Kinga Bobrowicz & Przemysław Bukowski & Jerzy Chojnacki & Jan Kielar, 2023. "Influence of Catalytic Additive Application on the Wood-Based Waste Combustion Process," Energies, MDPI, vol. 16(4), pages 1-13, February.
    15. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Yazeed Abdullah Almahraj, 2023. "British press coverage of international sports events hosted by Saudi Arabia: content analysis study in light of country concept model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    17. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    18. Ahmed, Shamsuddin & Islam, Md Tasbirul & Karim, Mohd Aminul & Karim, Nissar Mohammad, 2014. "Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh," Renewable Energy, Elsevier, vol. 72(C), pages 223-235.
    19. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    20. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.