IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922017342.html
   My bibliography  Save this article

Effects of aluminum powder additives on deflagration and detonation performance of JP-10/DEE mixed fuel under weak and strong ignition conditions

Author

Listed:
  • Jing, Qi
  • Wang, Dan
  • Shi, Congling

Abstract

As a high-density hydrocarbon fuel with good comprehensive properties, JP-10 is widely used in scramjets and detonation engines. Previous work has improved the ignition susceptibility and reduced incomplete combustion product concentration of JP-10 liquid fuel by blending diethyl ether (DEE). However, the density and bulk calorific value of hydrocarbons do not increase indefinitely with the increase of the ring structure, and the low temperature properties of the fuel gradually deteriorate with the increase of density. Therefore, adding metal dust with higher combustion calorific value to improve the energy density of mixed fuel is a new solution. In the present work, the deflagration and detonation properties of multiphase mixed fuels obtained by adding three aluminum powders with different morphologies and particle sizes (flake aluminum powder, small spherical aluminum powder, large spherical aluminum powder) to the JP-10/DEE mixed fuel were investigated. Under weak ignition conditions, the addition of aluminum powder increases the average burning rate of the multiphase mixed fuel and flame intensity significantly. The increase rate of the flame intensity when spherical powders are added is lower than that of the flake aluminum powder. The addition of aluminum powder is conducive to the early acceleration of deflagration, and the flame intensity reaches a high level earlier. Although the aluminum powder increases the energy of the reaction system, it also aggravates the incomplete combustion of JP-10/DEE in the oxygen-depleted state, and generates a large amount of soot. Under the strong ignition conditions, the DDT process of JP-10/DEE/aluminum powder can be divided into four stages: the slow propagation stage, shock wave formation stage as a result of compression wave superposition, coupling evolution stage of shock wave and flame front, and the detonation stage, respectively corresponding to four different pressure wave pattern. The strong ignition method greatly accelerates the evaporation of JP-10/DEE and the melting of the aluminum core in the initial stage, so that the multiphase mixture quickly changes from a slow propagation mode to a strong deflagration mode.

Suggested Citation

  • Jing, Qi & Wang, Dan & Shi, Congling, 2023. "Effects of aluminum powder additives on deflagration and detonation performance of JP-10/DEE mixed fuel under weak and strong ignition conditions," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017342
    DOI: 10.1016/j.apenergy.2022.120477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKechnie, Jon & Saville, Brad & MacLean, Heather L., 2016. "Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation," Applied Energy, Elsevier, vol. 180(C), pages 637-649.
    2. Luo, Zhenmin & Li, Dafang & Su, Bin & Zhang, Siqi & Deng, Jun, 2020. "On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases," Energy, Elsevier, vol. 198(C).
    3. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    4. Wang, Tao & Luo, Zhenmin & Wen, Hu & Cheng, Fangming & Liu, Litao & Su, Yang & Liu, Changchun & Zhao, Jingyu & Deng, Jun & Yu, Minggao, 2021. "The explosion enhancement of methane-air mixtures by ethylene in a confined chamber," Energy, Elsevier, vol. 214(C).
    5. Wang, Dan & Qian, Xinming & Ji, Tingchao & Jing, Qi & Zhang, Qi & Yuan, Mengqi, 2021. "Flammability limit and explosion energy of methane in enclosed pipeline under multi-phase conditions," Energy, Elsevier, vol. 217(C).
    6. Qin, Peng & Jia, Zhuangzhuang & Wu, Jingyun & Jin, Kaiqiang & Duan, Qiangling & Jiang, Lihua & Sun, Jinhua & Ding, Jinghu & Shi, Cheng & Wang, Qingsong, 2022. "The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Congliang & Zhang, Qi, 2022. "Chain explosion behaviors induced by discontinuous methane/air distribution," Energy, Elsevier, vol. 252(C).
    2. Zhou, Shangyong & Gao, Jiancun & Luo, Zhenmin & Hu, Shoutao & Wang, Le & Wang, Tao, 2022. "Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism," Energy, Elsevier, vol. 239(PC).
    3. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    4. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    5. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    6. Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
    7. Dai, Huaming & Yin, Hepeng & Zhai, Cheng, 2022. "Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate," Energy, Elsevier, vol. 261(PA).
    8. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    9. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    10. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    11. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    12. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    13. Peyman Alizadeh & Lope G. Tabil & Edmund Mupondwa & Xue Li & Duncan Cree, 2023. "Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust," Energies, MDPI, vol. 16(4), pages 1-18, February.
    14. Emily Hope & Bruno Gagnon & Vanja Avdić, 2020. "Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    15. Qi, Chang & Lv, Xianshu & Wang, Yalei & Wu, Chuandong & Chen, Lei & Yan, Xingqing & Yu, Jianliang, 2023. "Effects of ethylene addition and dilution on the explosion characteristics of ethane-ethylene mixtures," Energy, Elsevier, vol. 280(C).
    16. Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
    17. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    18. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    19. Tianyou Pei & Feixue Chen & Shuheng Qiu & Dawei Wu & Weiwei Gao & Zhaoping Xu & Chi Zhang, 2022. "Research on the Intake Port of a Uniflow Scavenging GDI Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 15(6), pages 1-15, March.
    20. Huang, Lijuan & Wang, Yu & Li, Zongfa & Zhang, Liang & Yin, Yuchuan & Chen, Chao & Ren, Shaoran, 2021. "Experimental study on piloted ignition temperature and auto ignition temperature of heavy oils at high pressure," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.