Detailed measurements of in-furnace gas temperature and species concentration distribution regarding the primary-air distribution mode in a spreader and reversal chain-grate furnace
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121384
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Bin & Ye, Xiao & Shen, Jun & Wang, Sha & Deng, Shengxiang & Yang, Jinbiao, 2021. "Investigations on the energy efficiency limits for industrial boiler operation and technical requirements—taking China’s Hunan province as an example," Energy, Elsevier, vol. 220(C).
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Wang, Jialin & Kuang, Min & Zhao, Xiaojuan & Wu, Haiqian & Ti, Shuguang & Chen, Chuyang & Jiao, Long, 2020. "Trends of the low-NOx and high-burnout combustion characteristics in a cascade-arch, W-shaped flame furnace regarding with the staged-air angle," Energy, Elsevier, vol. 212(C).
- Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
- Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & El-Salam, M. Abd & Zhou, Wei & Zhang, Ruihan & Ren, Xiaohan, 2018. "Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach," Energy, Elsevier, vol. 151(C), pages 501-519.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Michał Kozioł & Joachim Kozioł, 2023. "Impact of Primary Air Separation in a Grate Furnace on the Resulting Combustion Products," Energies, MDPI, vol. 16(4), pages 1-16, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Anqi & Xu, Hongpeng & Xu, Mingchen & Yu, Wenbin & Li, Zhenwei & Yang, Wenming, 2020. "Numerical investigation of biomass co-combustion with methane for NOx reduction," Energy, Elsevier, vol. 194(C).
- Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Tu, Yaojie & Xu, Shunta & Xu, Mingchen & Liu, Hao & Yang, Wenming, 2020. "Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm," Energy, Elsevier, vol. 197(C).
- Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
- Su, Xianqiang & Fang, Qingyan & Ma, Lun & Yin, Chungen & Chen, Xinke & Zhang, Cheng & Tan, Peng & Chen, Gang, 2024. "Mathematical modeling of a 30 MW biomass-fired grate boiler: A reliable baseline model taking fuel-bed structure into account," Energy, Elsevier, vol. 288(C).
- Bartłomiej Hernik & Piotr Brudziana & Radosław Klon & Marek Pronobis, 2024. "Numerical Studies of the Influence of Flue Gas Recirculation into Primary Air on NO x Formation, CO Emission, and Low-NO x Waterwall Corrosion in the OP 650 Boiler," Energies, MDPI, vol. 17(9), pages 1-25, May.
- Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
- Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
- Gu, Tianbao & Yin, Chungen & Ma, Wenchao & Chen, Guanyi, 2019. "Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation," Applied Energy, Elsevier, vol. 247(C), pages 127-139.
- Cheng, Jiaying & Liu, Bofan & Zhu, Tong, 2024. "Characterizing combustion instability in non-premixed methane combustion using internal flue gas recirculation," Applied Energy, Elsevier, vol. 370(C).
- Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
- Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
- Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Leszek Mieszkalski & Joanna Wichłacz, 2020. "Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device," Energies, MDPI, vol. 13(20), pages 1-18, October.
- Raquel Pérez-Orozco & David Patiño & Jacobo Porteiro & José Luís Míguez, 2020. "Novel Test Bench for the Active Reduction of Biomass Particulate Matter Emissions," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
- Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
More about this item
Keywords
Chain-grate furnace; Coal combustion; NOx emissions; Primary-air distribution pattern;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.