IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics036054422030342x.html
   My bibliography  Save this article

Stabilization characteristics and mechanisms in a novel tubular flame burner with localized stratified property

Author

Listed:
  • Ren, Shoujun
  • Yang, Haolin
  • Jiang, Liqiao
  • Zhao, Daiqing
  • Wang, Xiaohan

Abstract

The combustion characteristics in a localized stratified tubular flame burner (LSTFB) were experimentally studied under lean conditions. The stability limit and pressure fluctuation were obtained under various global equivalence ratios and fuel flow rates. The mechanisms driving the combustion instability were analyzed with the combination of numerical simulation. Results show the lean stability limit of the burner can be as low as 0.12 of the global equivalence ratio. On the basis of the local stratification of species, a kind of unique binary tubular flame is formed with both the premixed and non-premixed flame properties. Meanwhile, the internal recirculation heats the incomplete combustion gases distributed inside the tubular flame, thereby guaranteeing the balance between the flow velocity and the local flame speed. The amplitudes of pressure fluctuation are less than 4 kPa in the entire experimental range because of the flow laminarization caused by the large body force and density gradient. The pressure fluctuation characteristics depend on the relative magnitude of viscous force, inertial force, body force, and density gradient. The Taylor number Ta and stratification parameters Ri∗ are key parameters in evaluating the flame stability in the LSTFB.

Suggested Citation

  • Ren, Shoujun & Yang, Haolin & Jiang, Liqiao & Zhao, Daiqing & Wang, Xiaohan, 2020. "Stabilization characteristics and mechanisms in a novel tubular flame burner with localized stratified property," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030342x
    DOI: 10.1016/j.energy.2020.117235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030342X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
    2. Ren, Shoujun & Yang, Haolin & Jiang, Liqiao & Zhao, Daiqing & Wang, Xiaohan, 2020. "One axial fuel injected vortex-tube combustor with high capacity of combustion stabilization for NOx reduction," Energy, Elsevier, vol. 211(C).
    3. Ren, Shoujun & Jones, William P. & Wang, Xiaohan, 2023. "Multi-fuel combustion performance analysis and operating characteristics of a vortex-tube combustor," Energy, Elsevier, vol. 264(C).
    4. Zhang, Jing-hao & Bi, Ming-shu & Du, Dan & Hao, Qiang-qiang & Yu, Di & Wang, Yuan & Ren, Jing-jie, 2024. "Composite combustion behaviors of tubular flame and central jet flame in a reduced-diameter vortex combustor," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    2. Abedi, H. & Migliorini, F. & Dondè, R. & De Iuliis, S. & Passaretti, F. & Fanciulli, C., 2019. "Small size thermoelectric power supply for battery backup," Energy, Elsevier, vol. 188(C).
    3. Elghool, Ali & Basrawi, Firdaus & Ibrahim, Thamir Khalil & Ibrahim, Hassan & Ishak, M. & Hazwan bin Yusof, Mohd & Bagaber, Salem Abdullah, 2020. "Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection," Energy, Elsevier, vol. 208(C).
    4. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    5. Zhao, Zhengyang & Wang, Wei & Zuo, Zhengxing & Kuang, Nianling, 2022. "Investigation on the flame characteristics of premixed propane/air in a micro opposed flow porous combustor," Energy, Elsevier, vol. 238(PA).
    6. Wang, Hao & Peng, Qingguo & Tian, Xinghua & Yan, Feng & Wei, Depeng & Liu, Hui, 2024. "Experimental and numerical investigation on H2-fueled micro-thermophotovoltaic with CH4 and C3H8 blending in a tube fully/partially inserted porous media," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Aravind, B. & Hiranandani, Karan & Kumar, Sudarshan, 2020. "Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator," Energy, Elsevier, vol. 206(C).
    8. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    10. Li, Guoneng & Zheng, Youqu & Guo, Wenwen & Zhu, Dongya & Tang, Yuanjun, 2020. "Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics," Applied Energy, Elsevier, vol. 272(C).
    11. Hiranandani, Karan & Aravind, B. & Ratna Kishore, V. & Kumar, Sudarshan, 2020. "Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030342x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.