IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221014341.html
   My bibliography  Save this article

Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process

Author

Listed:
  • Arsenyeva, Olga
  • Klemeš, Jiří Jaromír
  • Kapustenko, Petro
  • Fedorenko, Olena
  • Kusakov, Sergiy
  • Kobylnik, Dmytro

Abstract

The vapour condensation is typical for processes of waste heat recovery from exhaust gases. It complicates the selection of condensers and requires reliable correlations for estimation of heat transfer coefficients and pressure drop in the unit. In the presented paper, a novel model was elaborated to be applied for commercially produced plate heat exchangers (PHEs) assembled from plates with different geometries of corrugations, which accounts the change of process parameters at the main corrugated field, in PHE collectors and channels distribution zones. The process of waste heat recovery from exhaust gases after tobacco drying is discussed in the case study. The pilot unit assembled with PHE of TS-6MFG type manufactured by Alfa Laval was installed at a tobacco factory. The examined condensing media was an incoming air-steam mixture with 10% of air content and temperature equal to 140 °C. The comparison of modelling results and data of industrial operation has shown good accuracy of prediction. It allowed recommending obtained correlations and developed mathematical model for the design of plate heat exchangers in applications with heat utilisation from exhaust gases after drying processes in the industry, with a considerable saving of heat energy. In the considered example, it is up to 640 kW or 2090 kJ/kg of exhaust gases.

Suggested Citation

  • Arsenyeva, Olga & Klemeš, Jiří Jaromír & Kapustenko, Petro & Fedorenko, Olena & Kusakov, Sergiy & Kobylnik, Dmytro, 2021. "Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014341
    DOI: 10.1016/j.energy.2021.121186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang & Lin, Chih-Hung, 2019. "Effect of flow losses in heat exchangers on the performance of organic Rankine cycle," Energy, Elsevier, vol. 172(C), pages 391-400.
    2. Perevertaylenko, Olexander Yu. & Gariev, Andriy O. & Damartzis, Theodoros & Tovazhnyanskyy, Leonid L. & Kapustenko, Petro O. & Arsenyeva, Olga P., 2015. "Searches of cost effective ways for amine absorption unit design in CO2 post-combustion capture process," Energy, Elsevier, vol. 90(P1), pages 105-112.
    3. Arsenyeva, Olga & Piper, Mark & Zibart, Alexander & Olenberg, Alexander & Kenig, Eugeny Y., 2019. "Investigation of heat transfer and hydraulic resistance in small-scale pillow-plate heat exchangers," Energy, Elsevier, vol. 181(C), pages 1213-1224.
    4. Kapustenko, Petro O. & Klemeš, Jiří Jaromír & Arsenyeva, Olga P. & Kusakov, Sergey K. & Tovazhnyanskyy, Leonid L., 2020. "The influence of plate corrugations geometry scale factor on performance of plate heat exchanger as condenser of vapour from its mixture with noncondensing gas," Energy, Elsevier, vol. 201(C).
    5. Arsenyeva, O. & Kapustenko, P. & Tovazhnyanskyy, L. & Khavin, G., 2013. "The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions," Energy, Elsevier, vol. 57(C), pages 201-207.
    6. Zhang, Yanfeng & Jiang, Chen & Shou, Binan & Zhou, Wenxue & Zhang, Zhifeng & Wang, Shuang & Bai, Bofeng, 2018. "A quantitative energy efficiency evaluation and grading of plate heat exchangers," Energy, Elsevier, vol. 142(C), pages 228-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Göltaş, Merve & Gürel, Barış & Keçebaş, Ali & Akkaya, Volkan Ramazan & Güler, Onur Vahip & Kurtuluş, Karani & Gürbüz, Emine Yağız, 2022. "Thermo-hydraulic performance improvement with nanofluids of a fish-gill-inspired plate heat exchanger," Energy, Elsevier, vol. 253(C).
    2. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Tovazhnyanskyy, Leonid & Klochok, Eugeny & Kapustenko, Petro, 2023. "Estimating parameters of plate heat exchanger for condensation of steam from mixture with air as a component of heat exchanger network," Energy, Elsevier, vol. 283(C).
    3. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Klochock, Eugeny & Kapustenko, Petro, 2023. "The effect of plate size and corrugation pattern on plate heat exchanger performance in specific conditions of steam-air mixture condensation," Energy, Elsevier, vol. 263(PC).
    4. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    5. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapustenko, Petro & Klemeš, Jiří Jaromír & Arsenyeva, Olga & Tovazhnyanskyy, Leonid & Zorenko, Viktor, 2021. "Pressure drop in two phase flow of condensing air-steam mixture inside PHE channels formed by plates with corrugations of different geometries," Energy, Elsevier, vol. 228(C).
    2. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    3. Petro Kapustenko & Jiří Jaromír Klemeš & Olga Arsenyeva & Leonid Tovazhnyanskyy, 2023. "PHE (Plate Heat Exchanger) for Condensing Duties: Recent Advances and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-18, January.
    4. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Klochock, Eugeny & Kapustenko, Petro, 2023. "The effect of plate size and corrugation pattern on plate heat exchanger performance in specific conditions of steam-air mixture condensation," Energy, Elsevier, vol. 263(PC).
    5. Leonid Tovazhnyanskyy & Jiří Jaromir Klemeš & Petro Kapustenko & Olga Arsenyeva & Olexandr Perevertaylenko & Pavlo Arsenyev, 2020. "Optimal Design of Welded Plate Heat Exchanger for Ammonia Synthesis Column: An Experimental Study with Mathematical Optimisation," Energies, MDPI, vol. 13(11), pages 1-18, June.
    6. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    7. Luo, Junwei & Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Chen, Jianyong & Liang, Yingzong & Yang, Zhi & Chen, Ying, 2023. "Experimental and simulation investigation on the heat exchangers in an ORC under various heat source/sink conditions," Energy, Elsevier, vol. 264(C).
    8. Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
    9. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2019. "Experimental and Numerical Characterization of the Sliding Rotary Vane Expander Intake Pressure in Order to Develop a Novel Control-Diagnostic Procedure," Energies, MDPI, vol. 12(10), pages 1-17, May.
    10. Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
    11. Igor Korobiichuk & Viktorij Mel’nick & Vladyslav Shybetskyi & Sergii Kostyk & Myroslava Kalinina, 2022. "Optimization of Heat Exchange Plate Geometry by Modeling Physical Processes Using CAD," Energies, MDPI, vol. 15(4), pages 1-18, February.
    12. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    13. Xin Wang & Yong-qiang Feng & Tzu-Chen Hung & Zhi-xia He & Chih-Hung Lin & Muhammad Sultan, 2020. "Investigating the System Behaviors of a 10 kW Organic Rankine Cycle (ORC) Prototype Using Plunger Pump and Centrifugal Pump," Energies, MDPI, vol. 13(5), pages 1-18, March.
    14. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    15. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Tovazhnyanskyy, Leonid & Klochok, Eugeny & Kapustenko, Petro, 2023. "Estimating parameters of plate heat exchanger for condensation of steam from mixture with air as a component of heat exchanger network," Energy, Elsevier, vol. 283(C).
    16. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    17. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    18. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    19. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    20. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.