IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222030754.html
   My bibliography  Save this article

Experimental and simulation investigation on the heat exchangers in an ORC under various heat source/sink conditions

Author

Listed:
  • Luo, Junwei
  • Lu, Pei
  • Chen, Kaihuang
  • Luo, Xianglong
  • Chen, Jianyong
  • Liang, Yingzong
  • Yang, Zhi
  • Chen, Ying

Abstract

Investigation on the operation behavior of heat exchanger under various operation conditions is essential in improving the life-span performance of an organic Rankine cycle (ORC). In the present study, the experimental study on an ORC under different heat source/sink combination conditions is conducted. A numerical simulation model and a solution procedure for the evaporator and condenser are developed and validated. Through the combination of simulation and experimental investigation, the heat transfer characteristics of the heat exchangers under various off-design conditions are achieved. The variation of heat source heat transfer coefficient (HTC), working fluid HTC, heat sink HTC, overall HTC, equivalent overall HTC, and area allocation of heat exchanger are achieved zone by zone from the developed simulation model. The correlation for the evaporation pressure and condensation pressure are developed and the simulation on the heat exchangers under conditions different to the experimental conditions are conducted. Exergy analysis is conducted to study the exergy construction allocation of heat exchangers under off-design conditions. The findings of the present study are beneficial to understand the operation behavior of the heat exchanger in the context of ORC and aid the design of ORC under varying operation conditions.

Suggested Citation

  • Luo, Junwei & Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Chen, Jianyong & Liang, Yingzong & Yang, Zhi & Chen, Ying, 2023. "Experimental and simulation investigation on the heat exchangers in an ORC under various heat source/sink conditions," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030754
    DOI: 10.1016/j.energy.2022.126189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang & Lin, Chih-Hung, 2019. "Effect of flow losses in heat exchangers on the performance of organic Rankine cycle," Energy, Elsevier, vol. 172(C), pages 391-400.
    2. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    3. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    4. Gómez Aláez, S.L. & Bombarda, P. & Invernizzi, C.M. & Iora, P. & Silva, P., 2015. "Evaluation of ORC modules performance adopting commercial plastic heat exchangers," Applied Energy, Elsevier, vol. 154(C), pages 882-890.
    5. Patil, Vikas R. & Biradar, Vijay Irappa & Shreyas, R. & Garg, Pardeep & Orosz, Matthew S. & Thirumalai, N.C., 2017. "Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage," Renewable Energy, Elsevier, vol. 113(C), pages 1250-1260.
    6. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Peris, Bernardo & Navarro-Esbrí, Joaquín & Mateu-Royo, Carlos & Mota-Babiloni, Adrián & Molés, Francisco & Gutiérrez-Trashorras, Antonio J. & Amat-Albuixech, Marta, 2020. "Thermo-economic optimization of small-scale Organic Rankine Cycle: A case study for low-grade industrial waste heat recovery," Energy, Elsevier, vol. 213(C).
    8. Chen, Qicheng & Xu, Jinliang & Chen, Hongxia, 2012. "A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source," Applied Energy, Elsevier, vol. 98(C), pages 562-573.
    9. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    10. Yuh-Ren Lee & Chi-Ron Kuo & Chih-Hsi Liu & Ben-Ran Fu & Jui-Ching Hsieh & Chi-Chuan Wang, 2014. "Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators," Energies, MDPI, vol. 7(4), pages 1-13, April.
    11. Walraven, Daniël & Laenen, Ben & D'haeseleer, William, 2015. "Economic system optimization of air-cooled organic Rankine cycles powered by low-temperature geothermal heat sources," Energy, Elsevier, vol. 80(C), pages 104-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Meng & Zhou, Yuhao & Miao, Zheng & Yan, Peiwei & Zhang, Manzheng & Xu, Jinliang, 2024. "Multi-condition operating characteristics and optimization of a small-scale ORC system," Energy, Elsevier, vol. 290(C).
    2. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    3. Zhang, Yifan & Tsai, Yu-Chun & Ren, Xiao & Tuo, Zhaodong & Wang, Wei & Gong, Liang & Hung, Tzu-Chen, 2024. "Experimental study of the external load characteristics on a micro-scale organic Rankine cycle system," Energy, Elsevier, vol. 306(C).
    4. Zhang, Ji & Hu, Xudong & Wu, Ding & Huang, Xiaohui & Wang, Xuehui & Yang, Yan & Wen, Chuang, 2023. "A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations," Applied Energy, Elsevier, vol. 350(C).
    5. Zhang, Ji & Wu, Ding & Huang, Xiaohui & Hu, Xudong & Fang, Xi & Wen, Chuang, 2024. "Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations," Renewable Energy, Elsevier, vol. 226(C).
    6. Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Wu, Wei & Liang, Yingzong & Chen, Jianyong & Chen, Ying, 2024. "Experimental and simulation study on a zeotropic ORC system using R1234ze(E)/R245fa as working fluid," Energy, Elsevier, vol. 292(C).
    7. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    8. Sun, Enhui & Ji, Hongfu & Wang, Xiangren & Ma, Wenjing & Zhang, Lei & Xu, Jinliang, 2023. "Proposal of multistage mass storage process to approach isothermal heat rejection of semi-closed S–CO2 cycle," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    2. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    3. Zhang, Ji & Hu, Xudong & Wu, Ding & Huang, Xiaohui & Wang, Xuehui & Yang, Yan & Wen, Chuang, 2023. "A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations," Applied Energy, Elsevier, vol. 350(C).
    4. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).
    5. Luo, Xianglong & Wei, Youxing & Qiu, Guanfu & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2020. "Simultaneous design and off-design operation optimization of a waste heat-driven organic Rankine cycle using a multi-period mathematical programming method," Energy, Elsevier, vol. 213(C).
    6. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    7. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D’haeseleer, William, 2019. "Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles," Applied Energy, Elsevier, vol. 242(C), pages 716-731.
    8. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    9. Shu, Gequn & Yu, Guopeng & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization," Applied Energy, Elsevier, vol. 132(C), pages 325-338.
    10. Wang, Shukun & Li, Ke & Yu, Wei & Liu, Chao & Guan, Zhengjun, 2024. "Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle," Energy, Elsevier, vol. 292(C).
    11. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    12. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    13. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    14. Serafino, Aldo & Obert, Benoit & Vergé, Léa & Cinnella, Paola, 2020. "Robust optimization of an organic Rankine cycle for geothermal application," Renewable Energy, Elsevier, vol. 161(C), pages 1120-1129.
    15. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    16. Wang, Shukun & Liu, Zuming & Liu, Chao & Wang, Xiaonan, 2022. "Thermodynamic analysis of operating strategies for waste heat recovery of combined heating and power systems," Energy, Elsevier, vol. 258(C).
    17. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Ramos, Alba & Chatzopoulou, Maria Anna & Freeman, James & Markides, Christos N., 2018. "Optimisation of a high-efficiency solar-driven organic Rankine cycle for applications in the built environment," Applied Energy, Elsevier, vol. 228(C), pages 755-765.
    19. Zhonghe Han & Peng Li & Xu Han & Zhongkai Mei & Zhi Wang, 2017. "Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery," Energies, MDPI, vol. 10(10), pages 1-23, October.
    20. Song, Chongzhi & Gu, Mingyan & Miao, Zheng & Liu, Chao & Xu, Jinliang, 2019. "Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle," Energy, Elsevier, vol. 174(C), pages 97-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.