IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221012688.html
   My bibliography  Save this article

A two-stage multi-objective second generation biodiesel supply chain design considering social sustainability: A case study

Author

Listed:
  • Mohtashami, Zahra
  • Bozorgi-Amiri, Ali
  • Tavakkoli-Moghaddam, Reza

Abstract

Undesirable environmental impacts caused by fossil fuel consumption have motivated governments to focus on biofuels production. Therefore, in our paper, we design a multi-objective biodiesel supply chain from Jatropha, which includes biomass cultivation center, pretreatment, and oil extraction center, biorefinery, and demand zone. In our study, a two-stage approach presented, which first specifies candidate locations for biomass cultivation with a common weight data envelopment analysis (CWDEA) method and then strategic and tactical decisions were made by a mathematical model. The presented multi-objective model focuses on cost minimization, besides social benefits and environmental impacts maximization while a life cycle assessment approach is used to model social indicators. The capability of the model is validated by proposing a case study of Iran and the augmented ε-constraint method is employed to reach a trade-off between three pillars of sustainability while managerial insights are provided by employing a Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for the optimal solution selection. Model's results and sensitivity analysis on key parameters, specify the best locations for Jatropha Curcas L. (JCL) cultivation and facility construction as well as an optimal value of supply chain variables, which finally proves that Iran has a high potential for biodiesel production from JCL that leads improving balanced socio-economic development in this country.

Suggested Citation

  • Mohtashami, Zahra & Bozorgi-Amiri, Ali & Tavakkoli-Moghaddam, Reza, 2021. "A two-stage multi-objective second generation biodiesel supply chain design considering social sustainability: A case study," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221012688
    DOI: 10.1016/j.energy.2021.121020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fattahi, Mohammad & Govindan, Kannan, 2018. "A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 534-567.
    2. Houssem Felfel & Omar Ayadi & Faouzi Masmoudi, 2017. "Pareto Optimal Solution Selection for a Multi-Site Supply Chain Planning Problem Using the VIKOR and TOPSIS Methods," International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), IGI Global, vol. 8(3), pages 21-39, July.
    3. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    4. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    5. Torabi, S.A. & Mansouri, S.A., 2015. "Integrated business continuity and disaster recovery planning: Towards organizational resilienceAuthor-Name: Sahebjamnia, N," European Journal of Operational Research, Elsevier, vol. 242(1), pages 261-273.
    6. Ghelichi, Zabih & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study," Energy, Elsevier, vol. 156(C), pages 661-687.
    7. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Cambero, Claudia & Sowlati, Taraneh, 2016. "Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 178(C), pages 721-735.
    10. Reza Babazadeh & Mohammad Voria Yavarirad & Ehsan Momeni Bashusqeh, 2018. "Location Optimization of Rapeseed and Soybean Cultivation Areas Considering Economic, Climatic and Social Criteria," International Journal of Social Ecology and Sustainable Development (IJSESD), IGI Global, vol. 9(3), pages 53-65, July.
    11. Pishvaee, M.S. & Razmi, J. & Torabi, S.A., 2014. "An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 14-38.
    12. Azadeh, A. & Ghaderi, S.F. & Nasrollahi, M.R., 2011. "Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 36(5), pages 1621-1631.
    13. Ralph Sims, 2003. "Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(4), pages 349-370, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Azadi & Zohreh Moghaddas & Reza Farzipoor Saen & Angappa Gunasekaran & Sachin Kumar Mangla & Alessio Ishizaka, 2023. "Using network data envelopment analysis to assess the sustainability and resilience of healthcare supply chains in response to the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 328(1), pages 107-150, September.
    2. Sainati, Tristano & Locatelli, Giorgio & Mignacca, Benito, 2023. "Social sustainability of energy infrastructures: The role of the programme governance framework," Energy, Elsevier, vol. 282(C).
    3. Gafti, Morteza & Sabouhi, Fatemeh & Bozorgi-Amiri, Ali & Jamili, Amin, 2023. "A multi-period location-routing model for waste-to-energy supply chain: A case study," Applied Energy, Elsevier, vol. 337(C).
    4. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    5. Pardis Pourmohammadi & Reza Tavakkoli-Moghaddam & Yaser Rahimi & Chefi Triki, 2023. "Solving a hub location-routing problem with a queue system under social responsibility by a fuzzy meta-heuristic algorithm," Annals of Operations Research, Springer, vol. 324(1), pages 1099-1128, May.
    6. Mohammad Kanan & Muhammad Salman Habib & Tufail Habib & Sadaf Zahoor & Anas Gulzar & Hamid Raza & Zaher Abusaq, 2022. "A Flexible Robust Possibilistic Programming Approach for Sustainable Second-Generation Biogas Supply Chain Design under Multiple Uncertainties," Sustainability, MDPI, vol. 14(18), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khanjarpanah, Hossein & Jabbarzadeh, Armin, 2019. "Sustainable wind plant location optimization using fuzzy cross-efficiency data envelopment analysis," Energy, Elsevier, vol. 170(C), pages 1004-1018.
    2. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    3. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    4. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    5. Yulin Lu & Chengyu Li & Min-Jae Lee, 2023. "A Study on the Measurement and Influences of Energy Green Efficiency: Based on Panel Data from 30 Provinces in China," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    6. Martin Eling, 2006. "Performance measurement of hedge funds using data envelopment analysis," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(4), pages 442-471, December.
    7. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    8. Yang, Guo-liang & Fukuyama, Hirofumi & Chen, Kun, 2019. "Investigating the regional sustainable performance of the Chinese real estate industry: A slack-based DEA approach," Omega, Elsevier, vol. 84(C), pages 141-159.
    9. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    10. Liu, Haiyue & Zhang, Ruchuan & Zhou, Li & Li, Aijun, 2023. "Evaluating the financial performance of companies from the perspective of fund procurement and application: New strategy cross efficiency network data envelopment analysis models," Energy, Elsevier, vol. 269(C).
    11. Matthias Staat & Maik Hammerschmidt, 2004. "A Super Efficiency Model for Product Evaluation," Microeconomics 0402011, University Library of Munich, Germany.
    12. Adel Hatami-Marbini & Madjid Tavana & Kobra Gholami & Zahra Ghelej Beigi, 2015. "A Bounded Data Envelopment Analysis Model in a Fuzzy Environment with an Application to Safety in the Semiconductor Industry," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 679-701, February.
    13. Imanirad, Raha & Cook, Wade D. & Aviles-Sacoto, Sonia Valeria & Zhu, Joe, 2015. "Partial input to output impacts in DEA: The case of DMU-specific impacts," European Journal of Operational Research, Elsevier, vol. 244(3), pages 837-844.
    14. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    15. Xianmei Wang & Hanhui Hu, 2017. "Sustainability in Chinese Higher Educational Institutions’ Social Science Research: A Performance Interface toward Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-18, October.
    16. Cheng, Gang & Qian, Zhenhua, 2011. "Dea数据标准化方法及其在方向距离函数模型中的应用 [Data normalization for data envelopment analysis and its application to directional distance function]," MPRA Paper 31995, University Library of Munich, Germany.
    17. Anna Ćwiąkała-Małys & Violetta Nowak, 2009. "Classification of Data Envelopment Analysis models," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(3), pages 5-18.
    18. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    19. Головань С.В. & Назин В.В. & Пересецкий А.А., 2010. "Непараметрические Оценки Эффективности Российских Банков," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 46(3), июль.
    20. Thomas Bournaris & George Vlontzos & Christina Moulogianni, 2019. "Efficiency of Vegetables Produced in Glasshouses: The Impact of Data Envelopment Analysis (DEA) in Land Management Decision Making," Land, MDPI, vol. 8(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221012688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.