A multi-period location-routing model for waste-to-energy supply chain: A case study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.120802
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
- Hu, Chenlian & Liu, Xiao & Lu, Jie & Wang, Chi-Hwa, 2020. "Distributionally robust optimization for power trading of waste-to-energy plants under uncertainty," Applied Energy, Elsevier, vol. 276(C).
- Asadi, Ehsan & Habibi, Farhad & Nickel, Stefan & Sahebi, Hadi, 2018. "A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain," Applied Energy, Elsevier, vol. 228(C), pages 2235-2261.
- Murillo-Alvarado, Pascual Eduardo & Ponce-Ortega, José María, 2022. "An optimization approach to increase the human development index through a biogas supply chain in a developing region," Renewable Energy, Elsevier, vol. 190(C), pages 347-357.
- Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- Marufuzzaman, Mohammad & Ekşioğlu, Sandra Duni, 2017. "Managing congestion in supply chains via dynamic freight routing: An application in the biomass supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 54-76.
- Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
- Mohtashami, Zahra & Bozorgi-Amiri, Ali & Tavakkoli-Moghaddam, Reza, 2021. "A two-stage multi-objective second generation biodiesel supply chain design considering social sustainability: A case study," Energy, Elsevier, vol. 233(C).
- Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
- Mohammad Marufuzzaman & Sandra Duni Ekşioğlu, 2017. "Designing a Reliable and Dynamic Multimodal Transportation Network for Biofuel Supply Chains," Transportation Science, INFORMS, vol. 51(2), pages 494-517, May.
- Khan, Imran & Kabir, Zobaidul, 2020. "Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment," Renewable Energy, Elsevier, vol. 150(C), pages 320-333.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sadeghi Darvazeh, Saeed & Mansoori Mooseloo, Farzaneh & Gholian-Jouybari, Fatemeh & Amiri, Maghsoud & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties," Applied Energy, Elsevier, vol. 356(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yunusoglu, Pinar & Ozsoydan, Fehmi Burcin & Bilgen, Bilge, 2024. "A machine learning-based two-stage approach for the location of undesirable facilities in the biomass-to-bioenergy supply chain," Applied Energy, Elsevier, vol. 362(C).
- Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Bahmani, Pardis & Dehghani Sadrabadi, Mohammad Hossein & Makui, Ahmad & Jafari-Nodoushan, Abbasali, 2024. "An optimization-based design methodology to manage the sustainable biomass-to-biodiesel supply chain under disruptions: A case study," Renewable Energy, Elsevier, vol. 229(C).
- Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
- Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
- Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
- Sadeghi Darvazeh, Saeed & Mansoori Mooseloo, Farzaneh & Gholian-Jouybari, Fatemeh & Amiri, Maghsoud & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties," Applied Energy, Elsevier, vol. 356(C).
- Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
- Naeini, Mina Alavi & Zandieh, Mostafa & Najafi, Seyyed Esmaeil & Sajadi, Seyed Mojtaba, 2020. "Analyzing the development of the third-generation biodiesel production from microalgae by a novel hybrid decision-making method: The case of Iran," Energy, Elsevier, vol. 195(C).
- Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
- Mansuy, Nicolas & Thiffault, Evelyne & Lemieux, Sébastien & Manka, Francis & Paré, David & Lebel, Luc, 2015. "Sustainable biomass supply chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern Canada," Applied Energy, Elsevier, vol. 154(C), pages 62-73.
- Tan, Qinliang & Wang, Tingran & Zhang, Yimei & Miao, Xinyan & Zhu, Jun, 2017. "Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China," Energy, Elsevier, vol. 139(C), pages 1066-1079.
- Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
- Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
- Ramezani, Mohammad & Khazaei, Moein & Gholian-Jouybari, Fatemeh & Sandoval-Correa, Alejandro & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Turquoise hydrogen and waste optimization: A Bi-objective closed-loop and sustainable supply chain model for a case in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Shahbazbegian, Vahid & Hosseini-Motlagh, Seyyed-Mahdi & Haeri, Abdorrahman, 2020. "Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data," Applied Energy, Elsevier, vol. 277(C).
- Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Mayerle, Sérgio Fernando & Neiva de Figueiredo, João, 2016. "Designing optimal supply chains for anaerobic bio-digestion/energy generation complexes with distributed small farm feedstock sourcing," Renewable Energy, Elsevier, vol. 90(C), pages 46-54.
- Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Shahbazbegian, Vahid, 2020. "Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty," Applied Energy, Elsevier, vol. 280(C).
- Leonardo Rivera-Cadavid & Pablo Cesar Manyoma-Velásquez & Diego F. Manotas-Duque, 2019. "Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR)," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
More about this item
Keywords
Municipal solid waste; Location-routing; Cross-dock; Waste-to-energy supply chain; Biofuel;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923001666. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.