IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i5p1621-1631.html
   My bibliography  Save this article

Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis

Author

Listed:
  • Azadeh, A.
  • Ghaderi, S.F.
  • Nasrollahi, M.R.

Abstract

Unique features of wind energy have caused increasing demands for such resources in various countries. In order to use wind energy as a natural resource, environmental circumstances and geographical location related to wind intensity must be considered. Different factors may affect on the selection of a suitable location for wind plants. These factors must be considered concurrently for optimum location identification of wind plants. This article presents an integrated approach for location of wind plants by hierarchical Data Envelopment Analysis (DEA). Furthermore, an integrated approach incorporating the most relevant indicators of wind plants is introduced. Moreover, two multivariable methods namely, Principal Component Analysis (PCA) and Numerical Taxonomy (NT) are used to validate the results of DEA model. The prescribed approach is tested for 25 different cities in Iran with 5 different regions within each city. The approach of this study has been validated by the previous studies and actual data of wind plants in Iran. This is the first study that considers an integrated mathematical approach for location optimization of wind plants. Implementation of the proposed approach would enable the energy policy makers to select the best possible location for construction of a wind power plant with lowest possible cost.

Suggested Citation

  • Azadeh, A. & Ghaderi, S.F. & Nasrollahi, M.R., 2011. "Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 36(5), pages 1621-1631.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1621-1631
    DOI: 10.1016/j.renene.2010.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen J. Huxley, 1982. "Finding the Right Spot for a Church Camp in Spain," Interfaces, INFORMS, vol. 12(5), pages 108-114, October.
    2. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    3. Wade Cook & Dan Chai & John Doyle & Rodney Green, 1998. "Hierarchies and Groups in DEA," Journal of Productivity Analysis, Springer, vol. 10(2), pages 177-198, October.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Aras, Haydar & Erdoğmuş, Şenol & Koç, Eylem, 2004. "Multi-criteria selection for a wind observation station location using analytic hierarchy process," Renewable Energy, Elsevier, vol. 29(8), pages 1383-1392.
    6. Azadeh, A. & Amalnick, M.S. & Ghaderi, S.F. & Asadzadeh, S.M., 2007. "An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors," Energy Policy, Elsevier, vol. 35(7), pages 3792-3806, July.
    7. Ramanathan, R, 2001. "Comparative Risk Assessment of energy supply technologies: a Data Envelopment Analysis approach," Energy, Elsevier, vol. 26(2), pages 197-203.
    8. Wirasinghe, S. C. & Waters, N. M., 1983. "An approximate procedure for determining the number, capacities and locations of solid waste transfer-stations in an urban region," European Journal of Operational Research, Elsevier, vol. 12(1), pages 105-111, January.
    9. Jacobsen, S. K. & Madsen, O. B. G., 1980. "A comparative study of heuristics for a two-level routing-location problem," European Journal of Operational Research, Elsevier, vol. 5(6), pages 378-387, December.
    10. Sheryl E. Kimes & James A. Fitzsimmons, 1990. "Selecting Profitable Hotel Sites at La Quinta Motor Inns," Interfaces, INFORMS, vol. 20(2), pages 12-20, April.
    11. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khanjarpanah, Hossein & Jabbarzadeh, Armin, 2019. "Sustainable wind plant location optimization using fuzzy cross-efficiency data envelopment analysis," Energy, Elsevier, vol. 170(C), pages 1004-1018.
    2. Farrell, Niall & Devine, Mel, 2015. "How do External Costs affect Pay-as-bid Renewable Energy Connection Auctions?," Papers WP517, Economic and Social Research Institute (ESRI).
    3. Grigoroudis, Evangelos & Petridis, Konstantinos & Arabatzis, Garyfallos, 2014. "RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks," Renewable Energy, Elsevier, vol. 71(C), pages 113-122.
    4. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Mohtashami, Zahra & Bozorgi-Amiri, Ali & Tavakkoli-Moghaddam, Reza, 2021. "A two-stage multi-objective second generation biodiesel supply chain design considering social sustainability: A case study," Energy, Elsevier, vol. 233(C).
    6. Santos, Marllen & González, Mario, 2019. "Factors that influence the performance of wind farms," Renewable Energy, Elsevier, vol. 135(C), pages 643-651.
    7. Navid Salmanzadeh-Meydani & S. M. T. Fatemi Ghomi & Seyedhamidreza Shahabi Haghighi & Kannan Govindan, 2023. "A multivariate quantitative approach for sustainability performance assessment: An upstream oil and gas company," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2777-2807, March.
    8. Hao-Teng Cheng & Hsueh-Sheng Chang, 2018. "A Spatial DEA-Based Framework for Analyzing the Effectiveness of Disaster Risk Reduction Policy Implementation: A Case Study of Earthquake-Oriented Urban Renewal Policy in Yongkang, Taiwan," Sustainability, MDPI, vol. 10(6), pages 1-18, May.
    9. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    10. A. Azadeh & M. S. Naghavi lhoseiny & V. Salehi, 2018. "Optimum alternatives of tandem G/G/K queues with disaster customers and retrial phenomenon: interactive voice response systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(3), pages 535-562, July.
    11. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    12. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    13. Farrell, Niall & Devine, Mel T. & Soroudi, Alireza, 2018. "An auction framework to integrate dynamic transmission expansion planning and pay-as-bid wind connection auctions," Applied Energy, Elsevier, vol. 228(C), pages 2462-2477.
    14. Azadeh, Ali & Rahimi-Golkhandan, Armin & Moghaddam, Mohsen, 2014. "Location optimization of wind power generation–transmission systems under uncertainty using hierarchical fuzzy DEA: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 877-885.
    15. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    16. Chia-Nan Wang & Van Tran Hoang Viet & Thanh Phong Ho & Van Thanh Nguyen & Syed Tam Husain, 2020. "Optimal Site Selection for a Solar Power Plant in the Mekong Delta Region of Vietnam," Energies, MDPI, vol. 13(16), pages 1-20, August.
    17. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    18. Rediske, G. & Burin, H.P. & Rigo, P.D. & Rosa, C.B. & Michels, L. & Siluk, J.C.M., 2021. "Wind power plant site selection: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.
    2. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    3. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    4. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    5. M. Lábaj & M. Luptáčik & E. Nežinský, 2014. "Data envelopment analysis for measuring economic growth in terms of welfare beyond GDP," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(3), pages 407-424, August.
    6. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.
    7. Fukuyama, Hirofumi & Liu, Hui-hui & Song, Yao-yao & Yang, Guo-liang, 2021. "Measuring the capacity utilization of the 48 largest iron and steel enterprises in China," European Journal of Operational Research, Elsevier, vol. 288(2), pages 648-665.
    8. Veronese da Silva, Aline & Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia, 2022. "Accounting multiple environmental variables in DEA energy transmission benchmarking modelling: The 2019 Brazilian case," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    9. Antonio Peyrache & Maria C. A. Silva, 2022. "Efficiency and Productivity Analysis from a System Perspective: Historical Overview," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 173-230, Springer.
    10. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    11. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    12. Xianhua Wu & Yufeng Chen & Ji Guo & Ge Gao, 2018. "Inputs optimization to reduce the undesirable outputs by environmental hazards: a DEA model with data of PM2.5 in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 1-25, January.
    13. Halkos, George & Tzeremes, Nickolaos, 2011. "A conditional full frontier modelling for analyzing environmental efficiency and economic growth," MPRA Paper 32839, University Library of Munich, Germany.
    14. Lynes, Melissa & Brewer, Brady & Featherstone, Allen, 2016. "Greenhouse Gas Emissions Effect on Cost Efficiencies of U.S. Electric Power Plants," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235890, Agricultural and Applied Economics Association.
    15. Utsav Pandey & Sanjeet Singh, 2022. "Data envelopment analysis in hierarchical category structure with fuzzy boundaries," Annals of Operations Research, Springer, vol. 315(2), pages 1517-1549, August.
    16. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    17. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    18. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    19. Kuosmanen, Timo & Kortelainen, Mika, 2007. "Valuing environmental factors in cost-benefit analysis using data envelopment analysis," Ecological Economics, Elsevier, vol. 62(1), pages 56-65, April.
    20. Makiko Nakano & Shunsuke Managi, 2012. "Waste generations and efficiency measures in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(4), pages 327-339, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1621-1631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.