IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics036054422101166x.html
   My bibliography  Save this article

Information gap decision theory (IGDT)-based robust scheduling of combined cooling, heat and power energy hubs

Author

Listed:
  • Jordehi, A. Rezaee
  • Javadi, Mohammad Sadegh
  • Shafie-khah, Miadreza
  • Catalão, João P.S.

Abstract

Energy hubs (EHs) are units wherein multiple energy carriers can be converted, stored and conditioned to simultaneously supply different energy demands. In this paper, a new model is proposed for unit commitment in renewable EHs with electric, thermal and cooling demands, different storage systems, combined heat and power (CHP) unit, boiler, electric chiller, absorption chiller, PV module, wind turbine and battery charging station (BCS). Using information gap decision theory (IGDT), day-ahead EH scheduling is done from risk-neutral, risk-averse and risk-seeking perspectives, considering the uncertainties of electric demands, BCS demands, heat demands, cooling demands, PV and wind power and electricity prices. Comprehensive models are used for storage systems considering their degradation, charging loss, discharging loss and storage loss; the ramp-up and ramp-down rate limits, start-up and shut-down costs of CHP, boiler and cooling components are considered. The effect of risk as well as effect of critical cost deviation factor and target cost deviation factor on EH operation cost and schedule of EH components is investigated. The findings indicate that the sensitivity of EH operation cost may be very different with respect to different sets of uncertain input data. The findings also show the significant effect of risk-awareness on schedule of EH components and its operation cost.

Suggested Citation

  • Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Information gap decision theory (IGDT)-based robust scheduling of combined cooling, heat and power energy hubs," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s036054422101166x
    DOI: 10.1016/j.energy.2021.120918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101166X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Catalão, João P.S., 2021. "Day-ahead scheduling of energy hubs with parking lots for electric vehicles considering uncertainties," Energy, Elsevier, vol. 229(C).
    2. Salehimaleh, Mohammad & Akbarimajd, Adel & Valipour, Khalil & Dejamkhooy, Abdolmajid, 2018. "Generalized modeling and optimal management of energy hub based electricity, heat and cooling demands," Energy, Elsevier, vol. 159(C), pages 669-685.
    3. Shams, Mohammad H. & Shahabi, Majid & MansourLakouraj, Mohammad & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids," Energy, Elsevier, vol. 222(C).
    4. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    5. Mansour-lakouraj, Mohammad & Shahabi, Majid, 2019. "Comprehensive analysis of risk-based energy management for dependent micro-grid under normal and emergency operations," Energy, Elsevier, vol. 171(C), pages 928-943.
    6. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    7. Mansouri, Seyed Amir & Ahmarinejad, Amir & Javadi, Mohammad Sadegh & Catalão, João P.S., 2020. "Two-stage stochastic framework for energy hubs planning considering demand response programs," Energy, Elsevier, vol. 206(C).
    8. Heidari, A. & Mortazavi, S.S. & Bansal, R.C., 2020. "Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies," Applied Energy, Elsevier, vol. 261(C).
    9. Mostafavi Sani, Mostafa & Noorpoor, Alireza & Shafie-Pour Motlagh, Majid, 2019. "Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory," Energy, Elsevier, vol. 177(C), pages 574-592.
    10. Jadidbonab, Mohammad & Babaei, Ebrahim & Mohammadi-ivatloo, Behnam, 2019. "CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response and compressed air energy storage," Energy, Elsevier, vol. 174(C), pages 1238-1250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    2. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Dorahaki, Sobhan & Rashidinejad, Masoud & Fatemi Ardestani, Seyed Farshad & Abdollahi, Amir & Salehizadeh, Mohammad Reza, 2023. "An integrated model for citizen energy communities and renewable energy communities based on clean energy package: A two-stage risk-based approach," Energy, Elsevier, vol. 277(C).
    4. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Arévalo, Paul & Turky, Rania A. & Jurado, Francisco, 2022. "A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations," Energy, Elsevier, vol. 253(C).
    5. Wang, Y.X. & Chen, J.J. & Zhao, Y.L. & Xu, B.Y., 2024. "Incorporate robust optimization and demand defense for optimal planning of shared rental energy storage in multi-user industrial park," Energy, Elsevier, vol. 301(C).
    6. Qiu, Dawei & Xue, Juxing & Zhang, Tingqi & Wang, Jianhong & Sun, Mingyang, 2023. "Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading," Applied Energy, Elsevier, vol. 333(C).
    7. Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Mansouri, Seyed Amir & Jurado, Francisco, 2023. "A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots," Energy, Elsevier, vol. 263(PD).
    8. MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal market-based operation of microgrid with the integration of wind turbines, energy storage system and demand response resources," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    5. Abdulnasser, Ghada & Ali, Abdelfatah & Shaaban, Mostafa F. & Mohamed, Essam E.M., 2024. "Optimal resource allocation and operation for smart energy hubs considering hydrogen storage systems and electric vehicles," Energy, Elsevier, vol. 295(C).
    6. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    7. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    8. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
    9. Naghikhani, Ali & Hosseini, Seyed Mohammad Hassan, 2022. "Optimal thermal and power planning considering economic and environmental issues in peak load management," Energy, Elsevier, vol. 239(PA).
    10. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    11. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    12. MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal market-based operation of microgrid with the integration of wind turbines, energy storage system and demand response resources," Energy, Elsevier, vol. 239(PB).
    13. Shams, Mohammad H. & Shahabi, Majid & MansourLakouraj, Mohammad & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids," Energy, Elsevier, vol. 222(C).
    14. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "How can combined heating and cooling networks benefit from thermal energy storage? Minimizing lifetime cost for different scenarios," Energy, Elsevier, vol. 243(C).
    15. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong & Zhao, Liang & Wu, Gang & Xu, Song, 2022. "Low-carbon distribution system planning considering flexible support of zero-carbon energy station," Energy, Elsevier, vol. 244(PB).
    16. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    17. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    18. Karimi, Hamid & Jadid, Shahram, 2023. "Multi-layer energy management of smart integrated-energy microgrid systems considering generation and demand-side flexibility," Applied Energy, Elsevier, vol. 339(C).
    19. Azimi, Maryam & Salami, Abolfazl, 2021. "A new approach on quantification of flexibility index in multi-carrier energy systems towards optimally energy hub management," Energy, Elsevier, vol. 232(C).
    20. Ma, Tengfei & Pei, Wei & Xiao, Hao & Kong, Li & Mu, Yunfei & Pu, Tianjiao, 2020. "The energy management strategies based on dynamic energy pricing for community integrated energy system considering the interactions between suppliers and users," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s036054422101166x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.