IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v217y2021ics0360544220324609.html
   My bibliography  Save this article

Energy value mapping: A novel lean method to integrate energy efficiency into production management

Author

Listed:
  • Wen, Xuanhao
  • Cao, Huajun
  • Hon, Bernard
  • Chen, Erheng
  • Li, Hongcheng

Abstract

Integrating energy efficiency as a key criterion in production management is critical to increasing energy efficiency while maintaining productivity in manufacturing systems. However, this integration still poses a huge challenge for decision-makers due to a lack of knowledge about the linkage between energy efficiency and productivity. Consequently, related energy-saving potential remains unexploited. In this context, this paper presents an innovative Energy Value Mapping (EVM) method to promote the systematic integration of energy efficiency into production management. The method includes three consecutive phases: (i) energy loss modeling to reveal the coupling relation between energy losses and productivity variables; (ii) lean energy analysis using production-oriented energy performance indicators to highlight energy inefficiencies and indicate improvement directions; (iii) improvement strategies determination to improve energy efficiency simultaneously considering traditional production management decisions. Furthermore, an industrial case study of a die-casting plant has demonstrated the effeteness and practicality of the method, showing its great potential in identifying, visualizing, quantifying, analyzing, and decreasing the energy losses related to production and operations management. The results showed that the overall energy demand of the process chain could be reduced by 6.17% with the energy utilization and time utilization being increased by 5.0%, 4.8%, respectively.

Suggested Citation

  • Wen, Xuanhao & Cao, Huajun & Hon, Bernard & Chen, Erheng & Li, Hongcheng, 2021. "Energy value mapping: A novel lean method to integrate energy efficiency into production management," Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324609
    DOI: 10.1016/j.energy.2020.119353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
    2. Papetti, Alessandra & Menghi, Roberto & Di Domizio, Giulia & Germani, Michele & Marconi, Marco, 2019. "Resources value mapping: A method to assess the resource efficiency of manufacturing systems," Applied Energy, Elsevier, vol. 249(C), pages 326-342.
    3. Ningxuan Kang & Cong Zhao & Jingshan Li & John A. Horst, 2016. "A Hierarchical structure of key performance indicators for operation management and continuous improvement in production systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6333-6350, November.
    4. António Pedro Lacerda & Ana Raquel Xambre & Helena Maria Alvelos, 2016. "Applying Value Stream Mapping to eliminate waste: a case study of an original equipment manufacturer for the automotive industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1708-1720, March.
    5. Dehning, Patrick & Blume, Stefan & Dér, Antal & Flick, Dominik & Herrmann, Christoph & Thiede, Sebastian, 2019. "Load profile analysis for reducing energy demands of production systems in non-production times," Applied Energy, Elsevier, vol. 237(C), pages 117-130.
    6. Anass Cherrafi & Said Elfezazi & Kannan Govindan & Jose Arturo Garza-Reyes & Khalid Benhida & Ahmed Mokhlis, 2017. "A framework for the integration of Green and Lean Six Sigma for superior sustainability performance," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4481-4515, August.
    7. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    8. Sucic, Boris & Al-Mansour, Fouad & Pusnik, Matevz & Vuk, Tomaz, 2016. "Context sensitive production planning and energy management approach in energy intensive industries," Energy, Elsevier, vol. 108(C), pages 63-73.
    9. Cai, Wei & Liu, Fei & Zhou, XiaoNa & Xie, Jun, 2016. "Fine energy consumption allowance of workpieces in the mechanical manufacturing industry," Energy, Elsevier, vol. 114(C), pages 623-633.
    10. Abreu, M. Florentina & Alves, Anabela C. & Moreira, Francisco, 2017. "Lean-Green models for eco-efficient and sustainable production," Energy, Elsevier, vol. 137(C), pages 846-853.
    11. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    12. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    13. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst & Pugliese, Giacomo, 2013. "Empirical investigation of energy efficiency barriers in Italian manufacturing SMEs," Energy, Elsevier, vol. 49(C), pages 444-458.
    14. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongcheng & Yang, Dan & Cao, Huajun & Ge, Weiwei & Chen, Erheng & Wen, Xuanhao & Li, Chongbo, 2022. "Data-driven hybrid petri-net based energy consumption behaviour modelling for digital twin of energy-efficient manufacturing system," Energy, Elsevier, vol. 239(PC).
    2. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    3. Wen, Xuanhao & Cao, Huajun & Li, Hongcheng & Zheng, Jie & Ge, Weiwei & Chen, Erheng & Gao, Xi & Hon, Bernard, 2022. "A dual energy benchmarking methodology for energy-efficient production planning and operation of discrete manufacturing systems using data mining techniques," Energy, Elsevier, vol. 255(C).
    4. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    5. Gong, Shixin, 2023. "Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system," Energy, Elsevier, vol. 267(C).
    6. Tangbin Xia & Xiangxin An & Huaqiang Yang & Yimin Jiang & Yuhui Xu & Meimei Zheng & Ershun Pan, 2023. "Efficient Energy Use in Manufacturing Systems—Modeling, Assessment, and Management Strategy," Energies, MDPI, vol. 16(3), pages 1-20, January.
    7. Noor Shakir Mahmood & Ahmed Ali Ajmi & Shamsul Bin Sarip & Hazilah Mad Kaidi & Khairur Rijal Jamaludin & Hayati Habibah Abdul Talib, 2022. "Modeling the Sustainable Integration of Quality and Energy Management in Power Plants," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    8. Monika Górska & Marta Daroń, 2021. "Importance of Machine Modernization in Energy Efficiency Management of Manufacturing Companies," Energies, MDPI, vol. 14(24), pages 1-19, December.
    9. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Xuanhao & Cao, Huajun & Li, Hongcheng & Zheng, Jie & Ge, Weiwei & Chen, Erheng & Gao, Xi & Hon, Bernard, 2022. "A dual energy benchmarking methodology for energy-efficient production planning and operation of discrete manufacturing systems using data mining techniques," Energy, Elsevier, vol. 255(C).
    2. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    3. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    4. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    5. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    7. Antonella Biscione & Annunziata de Felice & Teodoro Gallucci, 2022. "Energy Saving in Transition Economies: Environmental Activities in Manufacturing Firms," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    8. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    9. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    10. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    11. Jia, Shun & Cai, Wei & Liu, Conghu & Zhang, Zhongwei & Bai, Shuowei & Wang, Qiuyan & Li, Shuoshuo & Hu, Luoke, 2021. "Energy modeling and visualization analysis method of drilling processes in the manufacturing industry," Energy, Elsevier, vol. 228(C).
    12. Li, Lei & Huang, Haihong & Zou, Xiang & Zhao, Fu & Li, Guishan & Liu, Zhifeng, 2021. "An energy-efficient service-oriented energy supplying system and control for multi-machine in the production line," Applied Energy, Elsevier, vol. 286(C).
    13. Benjie Li & Hualin Zheng & Xiao Yang & Liang Guo & Binglin Li, 2020. "Energy Optimization for Motorized Spindle System of Machine Tools under Minimum Thermal Effects and Maximum Productivity Constraints," Energies, MDPI, vol. 13(22), pages 1-17, November.
    14. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    15. Zarrin Fatima & Virpi Oksman & Risto Lahdelma, 2021. "Enabling Small Medium Enterprises (SMEs) to Become Leaders in Energy Efficiency Using a Continuous Maturity Matrix," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    16. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    17. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    18. Björn Christensen & Alexander Himme, 2017. "Improving environmental management accounting: how to use statistics to better determine energy consumption," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 28(2), pages 227-243, May.
    19. Wei, Min & Hong, Seung Ho & Alam, Musharraf, 2016. "An IoT-based energy-management platform for industrial facilities," Applied Energy, Elsevier, vol. 164(C), pages 607-619.
    20. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.