IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006757.html
   My bibliography  Save this article

Exergoenvironmental analysis of the integrated copper-chlorine cycle for hydrogen production

Author

Listed:
  • Razi, Faran
  • Dincer, Ibrahim
  • Gabriel, Kamiel

Abstract

Thermochemical water-splitting cycles have the potential of producing large-scale and cost-effective sustainable hydrogen in an environmentally benign manner. Limited exergoenvironmental assessments have been reported in the literature which generally considers thermochemical hydrogen production and specifically the copper-chlorine (Cu–Cl) cycle in thid regard. Thus, the present investigation aims at assessing the four-step integrated Cu–Cl thermochemical cycle set-up located at the Ontario Tech University thereby contributing to the environmental impact assessment of thermochemical hydrogen production. In this study, the exergy analysis of the cycle is first performed by thermodynamically modeling and simulating the cycle in Aspen-plus. The fundamental principles of the exergoenvironmental analysis, analogous to the specific exergy costing (SPECO) methodology of the exergoeconomic evaluation, are applied to the cycle and the balanced environmental impact equations for all cycle components are developed. Based on the balanced environmental impact equations, the environmental impact rate, and the specific environmental impact at each state point is evaluated. The environmental impact levels for all the major cycle components are also obtained. The exergoenvironmental factor, the relative difference of the specific environmental impacts, and the environmental impact rate of exergy destruction for various cycle components are in this regard evaluated. Furthermore, the influence of various parameters on the cumulative and component-related rate of environmental impact as well as the exergoenvironmental factor is analyzed by conducting a detailed sensitivity analysis. According to the obtained results, the rate of environmental impact corresponding to exergy destruction dominates the component-related rate of environmental impact and thus the potential reduction in the cumulative environmental impact for various components could be achieved by improving their exergy efficiencies. The hydrolysis step accounts for 60% of the component-related environmental impact while the thermolysis step accounts for the highest environmental impact of exergy destruction ranging between 41 and 42%. The percentage difference between fossil fuel-based and renewable electricity in terms of the global warming potential ranges between 80% and 98% with the highest difference for wind and nuclear-based electricity.

Suggested Citation

  • Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2021. "Exergoenvironmental analysis of the integrated copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006757
    DOI: 10.1016/j.energy.2021.120426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
    2. Ozbilen, Ahmet & Dincer, Ibrahim & Rosen, Marc A., 2014. "Development of new heat exchanger network designs for a four-step Cu–Cl cycle for hydrogen production," Energy, Elsevier, vol. 77(C), pages 338-351.
    3. Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2020. "Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 205(C).
    4. Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
    5. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    6. Blumberg, Timo & Lee, Young Duk & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoenvironmental analysis of methanol production by steam reforming and autothermal reforming of natural gas," Energy, Elsevier, vol. 181(C), pages 1273-1284.
    7. Bonforte, Giuseppe & Buchgeister, Jens & Manfrida, Giampaolo & Petela, Karolina, 2018. "Exergoeconomic and exergoenvironmental analysis of an integrated solar gas turbine/combined cycle power plant," Energy, Elsevier, vol. 156(C), pages 352-359.
    8. Ghorbani, Sh. & Khoshgoftar-Manesh, M.H. & Nourpour, M. & Blanco-Marigorta, A.M., 2020. "Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system," Energy, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
    2. Rocha, Danilo H.D. & Siqueira, Diana S. & Silva, Rogério J., 2021. "Exergoenvironmental analysis for evaluating coal-fired power plants technologies," Energy, Elsevier, vol. 233(C).
    3. Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2024. "A comparative exergoenvironmental assessment of thermochemical copper-chlorine cycles for sustainable hydrogen production," Energy, Elsevier, vol. 300(C).
    4. Wang, Qingqiang & Hou, Jili & Wei, Xing & Jin, Nan & Ma, Yue & Li, Shuyuan & Zhao, Yuchao, 2022. "Advanced exergoenvironmental analysis of the oil shale retorting process with SJ-type rectangular retort," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yue & Zhu, Lin & He, Yangdong & Wang, Yuan & Hao, Qiang & Zhu, Yifei, 2023. "Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol," Energy, Elsevier, vol. 273(C).
    2. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    3. Keçebaş, Ali, 2016. "Exergoenvironmental analysis for a geothermal district heating system: An application," Energy, Elsevier, vol. 94(C), pages 391-400.
    4. Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2024. "A comparative exergoenvironmental assessment of thermochemical copper-chlorine cycles for sustainable hydrogen production," Energy, Elsevier, vol. 300(C).
    5. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    6. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    7. Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
    8. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    9. Seyam, Shaimaa & Dincer, Ibrahim & Agelin-Chaab, Martin, 2024. "Optimization and comparative evaluation of novel marine engines integrated with fuel cells using sustainable fuel choices," Energy, Elsevier, vol. 301(C).
    10. Wang, Qingqiang & Hou, Jili & Wei, Xing & Jin, Nan & Ma, Yue & Li, Shuyuan & Zhao, Yuchao, 2022. "Advanced exergoenvironmental analysis of the oil shale retorting process with SJ-type rectangular retort," Energy, Elsevier, vol. 260(C).
    11. Sahraei, Mohammad Hossein & Farhadi, Fatola & Boozarjomehry, Ramin Bozorgmehry, 2013. "Analysis and interaction of exergy, environmental and economic in multi-objective optimization of BTX process based on evolutionary algorithm," Energy, Elsevier, vol. 59(C), pages 147-156.
    12. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2018. "Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations," Energy, Elsevier, vol. 145(C), pages 38-51.
    13. Ding, Yang & Liu, Chao & Zhang, Cheng & Xu, Xiaoxiao & Li, Qibin & Mao, Lianfei, 2018. "Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid," Energy, Elsevier, vol. 145(C), pages 52-64.
    14. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
    15. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    16. Koo, Taehyung & Kim, Young Sang & Lee, Young Duk & Yu, Sangseok & Lee, Dong Keun & Ahn, Kook Young, 2021. "Exergetic evaluation of operation results of 5-kW-class SOFC-HCCI engine hybrid power generation system," Applied Energy, Elsevier, vol. 295(C).
    17. Aldair Benavides Gamero & Josué Camargo Vanegas & Jorge Duarte Forero & Guillermo Valencia Ochoa & Rafael Diaz Herazo, 2023. "Advanced Exergo-Environmental Assessments of an Organic Rankine Cycle as Waste Heat Recovery System from a Natural Gas Engine," Energies, MDPI, vol. 16(7), pages 1-29, March.
    18. Temiz, Mert & Dincer, Ibrahim, 2021. "Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems," Energy, Elsevier, vol. 219(C).
    19. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    20. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.