IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221003595.html
   My bibliography  Save this article

Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector

Author

Listed:
  • Peláez-Peláez, Sofía
  • Colmenar-Santos, Antonio
  • Pérez-Molina, Clara
  • Rosales, Ana-Esther
  • Rosales-Asensio, Enrique

Abstract

A techno-economic assessment is conducted for a hybrid combined generation system based on renewable storage technologies such as those offered by fuel cells and using hydrogen as a fuel, which is considered to be a sustainable energy vector. The proposed system consists of three subsystems: a photovoltaic system, which generates electrical energy through solar energy; the system for the generation, consumption and storage of hydrogen, where an electrolyzer is available to obtain hydrogen from water; the fuel cell, which will generate electrical and heat energy and a hydrogen tank to store the hydrogen; and a thermal system, consisting of a Heat Recovery Steam System and an absorption chiller where the thermal energy from the heat cell will be used for the thermal load. The electrical energy generated by the fuel cell serves as a support for the solar energy when, for whatever reason, it cannot meet the demand. The economic assessment, performed using the Hybrid Optimization of Multiple Energy Resources (HOMER) software, shows that the net present cost of the optimized system is $1,006,293 and the cost of energy $0.8399/kWh. The research here presented proved that, although this system is not economically viable at present, it is technically possible.

Suggested Citation

  • Peláez-Peláez, Sofía & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Rosales, Ana-Esther & Rosales-Asensio, Enrique, 2021. "Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003595
    DOI: 10.1016/j.energy.2021.120110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arsalis, Alexandros & Alexandrou, Andreas N. & Georghiou, George E., 2018. "Thermoeconomic modeling of a completely autonomous, zero-emission photovoltaic system with hydrogen storage for residential applications," Renewable Energy, Elsevier, vol. 126(C), pages 354-369.
    2. Raj, Arun S. & Ghosh, Prakash C., 2012. "Standalone PV-diesel system vs. PV-H2 system: An economic analysis," Energy, Elsevier, vol. 42(1), pages 270-280.
    3. Assaf, Jihane & Shabani, Bahman, 2019. "A novel hybrid renewable solar energy solution for continuous heat and power supply to standalone-alone applications with ultimate reliability and cost effectiveness," Renewable Energy, Elsevier, vol. 138(C), pages 509-520.
    4. Comodi, Gabriele & Carducci, Francesco & Sze, Jia Yin & Balamurugan, Nagarajan & Romagnoli, Alessandro, 2017. "Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies," Energy, Elsevier, vol. 121(C), pages 676-694.
    5. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2020. "Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study," Energy, Elsevier, vol. 202(C).
    6. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    7. Pearre, Nathaniel & Swan, Lukas, 2020. "Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy," Energy, Elsevier, vol. 203(C).
    8. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Assaf, Jihane & Shabani, Bahman, 2018. "Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: Towards 100% renewable heat and power supply to standalone applications," Energy, Elsevier, vol. 157(C), pages 862-876.
    10. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    11. Mehrjerdi, Hasan, 2020. "Modeling and optimization of an island water-energy nexus powered by a hybrid solar-wind renewable system," Energy, Elsevier, vol. 197(C).
    12. Carroquino, Javier & Roda, Vicente & Mustata, Radu & Yago, Jesús & Valiño, Luis & Lozano, Antonio & Barreras, Félix, 2018. "Combined production of electricity and hydrogen from solar energy and its use in the wine sector," Renewable Energy, Elsevier, vol. 122(C), pages 251-263.
    13. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    14. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    15. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    16. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    2. Antonio Perrelli & Eduardo Sodré & Vinícius Silva & Alex Santos, 2023. "Maximizing Returns and Minimizing Risks in Hybrid Renewable Energy Systems: A Stochastic Discounted Cash Flow Analysis of Wind and Photovoltaic Systems in Brazil," Energies, MDPI, vol. 16(19), pages 1-19, September.
    3. Shahsavari, Ardavan & Vaziri Rad, Mohammad Amin & Pourfayaz, Fathollah & Kasaeian, Alibakhsh, 2022. "Optimal sizing of an integrated CHP and desalination system as a polygeneration plant for supplying rural demands," Energy, Elsevier, vol. 258(C).
    4. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    5. Xiang Huang & Yapan Qu & Zhentao Zhu & Qiuchi Wu, 2023. "Techno-Economic Analysis of Photovoltaic Hydrogen Production Considering Technological Progress Uncertainty," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    6. Mohammadi, Amir & Babaei, Reza & Jianu, Ofelia A., 2023. "Feasibility analysis of sustainable hydrogen production for heavy-duty applications: Case study of highway 401," Energy, Elsevier, vol. 282(C).
    7. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    8. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    9. Al-Shetwi, Ali Q. & Atawi, Ibrahem E. & Abuelrub, Ahmad & Hannan, M.A., 2023. "Techno-economic assessment and optimal design of hybrid power generation-based renewable energy systems," Technology in Society, Elsevier, vol. 75(C).
    10. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    11. Shang, Jingyi & Gao, Jinfeng & Jiang, Xin & Liu, Mingguang & Liu, Dunnan, 2023. "Optimal configuration of hybrid energy systems considering power to hydrogen and electricity-price prediction: A two-stage multi-objective bi-level framework," Energy, Elsevier, vol. 263(PF).
    12. Smoliński, Adam & Howaniec, Natalia & Gąsior, Rafał & Polański, Jarosław & Magdziarczyk, Małgorzata, 2021. "Hydrogen rich gas production through co-gasification of low rank coal, flotation concentrates and municipal refuse derived fuel," Energy, Elsevier, vol. 235(C).
    13. Pourmoghadam, Peyman & Kasaeian, Alibakhsh, 2023. "Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors," Energy, Elsevier, vol. 262(PA).
    14. Ghorbani, Masoomeh & Solaimany Nazar, Ali Reza & Farhadian, Mehrdad & Tangestaninejad, Shahram, 2023. "Efficient tetracycline degradation and electricity production in photocatalytic fuel cell based on ZnO nanorod/BiOBr/UiO-66-NH2 photoanode and Cu2O/CuO photocathode," Energy, Elsevier, vol. 272(C).
    15. Wang, Baichao & Liu, Yanfeng & Wang, Dengjia & Song, Cong & Fu, Zhiguo & Zhang, Cong, 2024. "A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Hernández-Gómez, Ángel & Ramirez, Victor & Guilbert, Damien & Saldivar, Belem, 2021. "Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation," Renewable Energy, Elsevier, vol. 163(C), pages 1508-1522.
    3. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    4. Mendecka, Barbara & Chiappini, Daniele & Tribioli, Laura & Cozzolino, Raffaello, 2021. "A biogas-solar based hybrid off-grid power plant with multiple storages for United States commercial buildings," Renewable Energy, Elsevier, vol. 179(C), pages 705-722.
    5. Assaf, Jihane & Shabani, Bahman, 2019. "A novel hybrid renewable solar energy solution for continuous heat and power supply to standalone-alone applications with ultimate reliability and cost effectiveness," Renewable Energy, Elsevier, vol. 138(C), pages 509-520.
    6. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Khosravi, A. & Santasalo-Aarnio, A. & Syri, S., 2021. "Optimal technology for a hybrid biomass/solar system for electricity generation and desalination in Brazil," Energy, Elsevier, vol. 234(C).
    8. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    9. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    10. Kalantari, Hosein & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "An overview of directions for decarbonization of energy systems in cold climate remote mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Mohammadi, Amir & Babaei, Reza & Jianu, Ofelia A., 2023. "Feasibility analysis of sustainable hydrogen production for heavy-duty applications: Case study of highway 401," Energy, Elsevier, vol. 282(C).
    12. Das, Barun K. & Tushar, Mohammad Shahed H.K. & Zaman, Forhad, 2021. "Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads," Energy, Elsevier, vol. 215(PA).
    13. Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Qyyum, Muhammad Abdul & Dickson, Rofice & Ali Shah, Syed Fahad & Niaz, Haider & Khan, Amin & Liu, J. Jay & Lee, Moonyong, 2021. "Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    17. Apostolou, Dimitrios, 2020. "Optimisation of a hydrogen production – storage – re-powering system participating in electricity and transportation markets. A case study for Denmark," Applied Energy, Elsevier, vol. 265(C).
    18. Tuyet Thi Anh Nguyen & Shuo-Yan Chou, 2022. "Fusion of interval-valued neutrosophic sets and financial assessment for optimal renewable energy portfolios with uncertainties," Energy & Environment, , vol. 33(4), pages 783-808, June.
    19. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Wen, John Z., 2022. "Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems," Renewable Energy, Elsevier, vol. 200(C), pages 360-378.
    20. Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.