IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i12p1183-1202.html
   My bibliography  Save this article

Minimum power requirement for environmental control of aircraft

Author

Listed:
  • Ordonez, Juan Carlos
  • Bejan, Adrian

Abstract

This paper addresses two basic issues in the thermodynamic optimization of environmental control systems (ECS) for aircraft: realistic limits for the minimal power requirement, and design features that facilitate operation at minimal power consumption. Four models are proposed and optimized. In the first, the ECS operates reversibly, the air stream in the cabin is mixed to one temperature, and the cabin experiences heat transfer with the ambient, across its insulation. The cabin temperature is fixed. In the second model, the fixed cabin temperature is assigned to the internal solid surfaces of the cabin, and a thermal resistance separates these surfaces from the air mixed in the cabin. In the third model, the ECS operates irreversibly, based on the bootstrap air cycle. The fourth model combines the ECS features of the third model with the cabin-environment interaction features of the second model. It is shown that in all models the temperature of the air stream that the ECS delivers to the cabin can be optimized for operation at minimal power. The effect of other design parameters and flying conditions is documented. The optimized air delivery temperature is relatively insensitive to the complexity of the model; for example, it is insensitive to the size of the heat exchanger used in the bootstrap air cycle. This study adds to the view that robustness is a characteristic of optimized complex flow systems, and that thermodynamic optimization results can be used for orientation in the pursuit of more complex and realistic designs.

Suggested Citation

  • Ordonez, Juan Carlos & Bejan, Adrian, 2003. "Minimum power requirement for environmental control of aircraft," Energy, Elsevier, vol. 28(12), pages 1183-1202.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:12:p:1183-1202
    DOI: 10.1016/S0360-5442(03)00105-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203001051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00105-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiba, T. & Bejan, A., 2001. "Thermodynamic optimization of geometric structure in the counterflow heat exchanger for an environmental control system," Energy, Elsevier, vol. 26(5), pages 493-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Haoran & Duan, Zhongdi & Wang, Xuyang & Wang, Dawei & Wu, Chengyun, 2023. "A pressure-node based dynamic model for simulation and control of aircraft air-conditioning systems," Energy, Elsevier, vol. 263(PD).
    2. Yang, Yu & Chen, Shuangtao & Sheng, Chunchen & Xie, Hongtao & Luo, Gaoqiao & Hou, Yu, 2021. "Study on coupling performance of turbo-cooler in aircraft environmental control system," Energy, Elsevier, vol. 224(C).
    3. Duan, Zhongdi & Sun, Haoran & Wu, Chengyun & Hu, Haitao, 2022. "Multi-objective optimization of the aircraft environment control system based on component-level parameter decomposition," Energy, Elsevier, vol. 245(C).
    4. Duan, Zhongdi & Sun, Haoran & Wu, Chengyun & Hu, Haitao, 2022. "Flow-network based dynamic modelling and simulation of the temperature control system for commercial aircraft with multiple temperature zones," Energy, Elsevier, vol. 238(PB).
    5. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    6. Nunes, T.K. & Vargas, J.V.C. & Ordonez, J.C. & Shah, D. & Martinho, L.C.S., 2015. "Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response," Applied Energy, Elsevier, vol. 158(C), pages 540-555.
    7. Yang, Yuanchao & Gao, Zichen, 2019. "Power optimization of the environmental control system for the civil more electric aircraft," Energy, Elsevier, vol. 172(C), pages 196-206.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, T.K. & Vargas, J.V.C. & Ordonez, J.C. & Shah, D. & Martinho, L.C.S., 2015. "Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response," Applied Energy, Elsevier, vol. 158(C), pages 540-555.
    2. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
    3. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    4. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2011. "Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator," Energy, Elsevier, vol. 36(10), pages 6027-6036.
    5. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    6. Revellin, Rémi & Lips, Stéphane & Khandekar, Sameer & Bonjour, Jocelyn, 2009. "Local entropy generation for saturated two-phase flow," Energy, Elsevier, vol. 34(9), pages 1113-1121.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:12:p:1183-1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.