Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: Fuel properties and heavy metal transformation behaviour of hydrochars
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.119896
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- He, Chao & Chen, Chia-Lung & Giannis, Apostolos & Yang, Yanhui & Wang, Jing-Yuan, 2014. "Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1127-1142.
- Kim, Daegi & Park, Seyong & Park, Ki Young, 2017. "Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization," Energy, Elsevier, vol. 141(C), pages 598-602.
- He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
- Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.
- Wang, Ruikun & Wang, Chunbo & Zhao, Zhenghui & Jia, Jiandong & Jin, Qingzhuang, 2019. "Energy recovery from high-ash municipal sewage sludge by hydrothermal carbonization: Fuel characteristics of biosolid products," Energy, Elsevier, vol. 186(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
- Zhao, Peng & Yu, Shijie & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Understanding heavy metal in the conversion of biomass model component: Migration and transformation characteristics of Cu during hydrothermal carbonization of cellulose," Energy, Elsevier, vol. 293(C).
- Shen, Qian & Zhu, Xianqing & Peng, Yang & Xu, Mian & Huang, Yun & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass," Energy, Elsevier, vol. 295(C).
- Zhu, Zhe & Sun, Zhiqiang & Yu, Xiaofeng & Zhang, Shuo & Cao, Xinxin & Liu, Xuliang & Guo, Ziwen & Rosendahl, Lasse & Chen, Guanyi, 2024. "Valorization of low heavy metal-accumulating plants through catalytic hydrothermal liquefaction with attapulgite: Product characterization and migration behavior of heavy metals," Energy, Elsevier, vol. 295(C).
- Wilk, Małgorzata & Śliz, Maciej & Czerwińska, Klaudia & Gajek, Marcin & Kalemba-Rec, Izabela, 2024. "Improvements in dewaterability and fuel properties of hydrochars derived from hydrothermal co-carbonization of sewage sludge and organic waste," Renewable Energy, Elsevier, vol. 227(C).
- Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
- Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
- Wang, Ruikun & Lin, Zhaohua & Meng, Shu & Liu, Senyang & Zhao, Zhenghui & Wang, Chunbo & Yin, Qianqian, 2022. "Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein," Energy, Elsevier, vol. 259(C).
- Theodoros N. Kapetanakis & Ioannis O. Vardiambasis & Christos D. Nikolopoulos & Antonios I. Konstantaras & Trinh Kieu Trang & Duy Anh Khuong & Toshiki Tsubota & Ramazan Keyikoglu & Alireza Khataee & D, 2021. "Towards Engineered Hydrochars: Application of Artificial Neural Networks in the Hydrothermal Carbonization of Sewage Sludge," Energies, MDPI, vol. 14(11), pages 1-15, May.
- Djandja, Oraléou Sangué & Kang, Shimin & Huang, Zizhi & Li, Junqiao & Feng, Jiaqi & Tan, Zaiming & Salami, Adekunlé Akim & Lougou, Bachirou Guene, 2023. "Machine learning prediction of fuel properties of hydrochar from co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass," Energy, Elsevier, vol. 271(C).
- Liu, Tonggui & Jiao, HuiTing & Yang, Longsheng & Zhang, Weijin & Hu, Yingbing & Guo, Yonghao & Yang, Lihong & Leng, Songqi & Chen, Jiefeng & Chen, Jie & Peng, Haoyi & Leng, Lijian & Zhou, Wenguang, 2022. "Co-hydrothermal carbonization of cellulose, hemicellulose, and protein with aqueous phase recirculation: Insight into the reaction mechanisms on hydrochar formation," Energy, Elsevier, vol. 251(C).
- Gentil Mwengula Kahilu & Samson Bada & Jean Mulopo, 2022. "Coal Discards and Sewage Sludge Derived-Hydrochar for HIV Antiretroviral Pollutant Removal from Wastewater and Spent Adsorption Residue Evaluation for Sustainable Carbon Management," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
- Cao, Yang & He, Mingjing & Dutta, Shanta & Luo, Gang & Zhang, Shicheng & Tsang, Daniel C.W., 2021. "Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Kossińska, Nina & Grosser, Anna & Kwapińska, Marzena & Kwapiński, Witold & Ghazal, Heba & Jouhara, Hussam & Krzyżyńska, Renata, 2024. "Co-hydrothermal carbonization as a potential method of utilising digested sludge and screenings from wastewater treatment plants towards energy application," Energy, Elsevier, vol. 299(C).
- Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
- Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
- Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
- Czerwińska, Klaudia & Śliz, Maciej & Wilk, Małgorzata, 2022. "Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
- Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
- Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Wang, Ruikun & Lin, Zhaohua & Meng, Shu & Liu, Senyang & Zhao, Zhenghui & Wang, Chunbo & Yin, Qianqian, 2022. "Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein," Energy, Elsevier, vol. 259(C).
- Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).
- Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
- Ma, Peiyong & Yang, Jing & Xing, Xianjun & Weihrich, Sebastian & Fan, Fangyu & Zhang, Xianwen, 2017. "Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass," Renewable Energy, Elsevier, vol. 114(PB), pages 1069-1076.
- Zhang, Deli & Sun, Zhijing & Fu, Hongyue & Liu, Zhenfei & Wang, Fang & Zeng, Jianfei & Yi, Weiming, 2024. "Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 225(C).
- He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
- Heidari, Mohammad & Salaudeen, Shakirudeen & Arku, Precious & Acharya, Bishnu & Tasnim, Syeda & Dutta, Animesh, 2021. "Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions," Energy, Elsevier, vol. 214(C).
- Yang, Xiaoxia & Tian, Sicong & Kan, Tao & Zhu, Yuxiang & Xu, Honghui & Strezov, Vladimir & Nelson, Peter & Jiang, Yijiao, 2019. "Sorption-enhanced thermochemical conversion of sewage sludge to syngas with intensified carbon utilization," Applied Energy, Elsevier, vol. 254(C).
- Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
- Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
- Yao, Zhongliang & Ma, Xiaoqian, 2017. "A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis," Energy, Elsevier, vol. 141(C), pages 1156-1165.
- Abu-Taher Jamal-Uddin & Shakirudeen A. Salaudeen & Animesh Dutta & Richard G. Zytner, 2022. "Hydrothermal Conversion of Waste Biomass from Greenhouses into Hydrochar for Energy, Soil Amendment, and Wastewater Treatment Applications," Energies, MDPI, vol. 15(10), pages 1-21, May.
More about this item
Keywords
Hydrothermal carbonization; Sewage sludge; Lignocellulosic biomass; Heavy metals; Fuel properties;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001456. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.