IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v220y2021ics0360544221000554.html
   My bibliography  Save this article

The effects of long-term supercritical CO2 exposure on Zululand Basin core samples

Author

Listed:
  • Mavhengere, P.
  • Wagner, N.
  • Malumbazo, N.

Abstract

Carbon dioxide (CO2) sequestration in geological formations is a viable solution for ensuring coal-based energy supply whilst reducing CO2 emissions. The variation in the microstructure and composition of geological formations before and after CO2 storage plays a significant role in CO2 sequestration. Three core samples obtained from the Zululand Basin in South Africa were exposed to supercritical CO2 (ScCO2) in the presence of water under typical hydrothermal conditions (175 bar, 70 °C) for up to 2 months. The samples were characterized pre- and post-treatment using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), low pressure nitrogen (N2) adsorption and low pressure CO2 adsorption. Physical and chemical structural changes were observed in all three samples after treatment, to varying degrees. Mineral alterations were observed in the three samples, including plagioclase and calcite dissolution/precipitation and quartz composition changes. Dissolution of organic components and surface chemistry alterations were found in two of the core samples. Increases in pore volume, surface area and CO2 adsorption capacity were observed in all studied samples after CO2 treatment.

Suggested Citation

  • Mavhengere, P. & Wagner, N. & Malumbazo, N., 2021. "The effects of long-term supercritical CO2 exposure on Zululand Basin core samples," Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000554
    DOI: 10.1016/j.energy.2021.119806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221000554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Okamoto, Ikuo & Li, Xiaochun & Ohsumi, Takashi, 2005. "Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage," Energy, Elsevier, vol. 30(11), pages 2344-2351.
    2. Jiang, Yongdong & Luo, Yahuang & Lu, Yiyu & Qin, Chao & Liu, Hui, 2016. "Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale," Energy, Elsevier, vol. 97(C), pages 173-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaolei & Zhang, Dongming & Liu, Huihui & Jin, Zhehui & Yue, Tongfang & Zhang, Hao, 2022. "Investigation on the influences of CO2 adsorption on the mechanical properties of anthracite by Brazilian splitting test," Energy, Elsevier, vol. 259(C).
    2. Xu, Hongjie & Hu, Jishou & Liu, Huihu & Ding, Hai & Zhang, Kun & Jia, Jinlong & Fang, Huihuang & Gou, Boming, 2024. "Effect of the interaction time of CO2–H2O on the alterations of coal pore morphologies and water migration during wetting," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    2. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    3. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    4. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    5. Qin, Chao & Jiang, Yongdong & Cao, Mengyao & Zhou, Junping & Song, Xiao & Zuo, Shuangying & Chen, Shiwan & Luo, Yahuang & Xiao, Siyou & Yin, Hong & Du, Xidong, 2023. "Experimental study on the methane desorption-diffusion behavior of Longmaxi shale exposure to supercritical CO2," Energy, Elsevier, vol. 262(PA).
    6. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
    7. Sean P. Rigby & Ali Alsayah & Richard Seely, 2022. "Impact of Exposure to Supercritical Carbon Dioxide on Reservoir Caprocks and Inter-Layers during Sequestration," Energies, MDPI, vol. 15(20), pages 1-34, October.
    8. Yang, Xin & Wang, Gongda & Du, Feng & Jin, Longzhe & Gong, Haoran, 2022. "N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation," Energy, Elsevier, vol. 239(PC).
    9. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    10. Chen, Kang & Liu, Xianfeng & Nie, Baisheng & Zhang, Chengpeng & Song, Dazhao & Wang, Longkang & Yang, Tao, 2022. "Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2," Energy, Elsevier, vol. 248(C).
    11. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    12. Perera, M.S.A. & Ranjith, P.G. & Choi, S.K. & Airey, D., 2011. "The effects of sub-critical and super-critical carbon dioxide adsorption-induced coal matrix swelling on the permeability of naturally fractured black coal," Energy, Elsevier, vol. 36(11), pages 6442-6450.
    13. Cristian R. Medina & Maria Mastalerz & John A. Rupp, 2018. "Pore system characterization of Cambrian‐Ordovician carbonates using a new mercury porosimetry‐based petrofacies classification system: application to carbon sequestration reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 932-953, October.
    14. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    15. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure characterization of solvent extracted shale containing kerogen type III during artificial maturation: Experiments and tree-based machine learning modeling," Energy, Elsevier, vol. 283(C).
    16. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    17. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    18. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    19. Zhaolong Ge & Mengru Zeng & Yugang Cheng & Haoming Wang & Xianfeng Liu, 2019. "Effects of Supercritical CO 2 Treatment Temperature on Functional Groups and Pore Structure of Coals," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    20. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.