Experimental study on the methane desorption-diffusion behavior of Longmaxi shale exposure to supercritical CO2
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125456
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Qin, Chao & Jiang, Yongdong & Zhou, Junping & Zuo, Shuangying & Chen, Shiwan & Liu, Zhengjie & Yin, Hong & Li, Ye, 2022. "Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery," Energy, Elsevier, vol. 242(C).
- Jiang, Yongdong & Luo, Yahuang & Lu, Yiyu & Qin, Chao & Liu, Hui, 2016. "Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale," Energy, Elsevier, vol. 97(C), pages 173-181.
- Wei Dang & Jinchuan Zhang & Xiaoliang Wei & Xuan Tang & Chenghu Wang & Qian Chen & Yue Lei, 2017. "Methane Adsorption Rate and Diffusion Characteristics in Marine Shale Samples from Yangtze Platform, South China," Energies, MDPI, vol. 10(5), pages 1-23, May.
- Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
- Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).
- Li, Bo & Yu, Hao & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Meng, SiWei & Liu, He & Wu, HengAn, 2023. "A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks," Energy, Elsevier, vol. 284(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qin, Chao & Jiang, Yongdong & Fu, Yong & Chen, Shiwan & Song, Xiao & Zuo, Shuangying & Wu, Daoyong & Zou, Niuniu, 2023. "Thermodynamic characteristics of high-pressure CH4 adsorption on longmaxi shale subjected to supercritical CO2-water saturation," Energy, Elsevier, vol. 263(PC).
- Qin, Chao & Jiang, Yongdong & Zhou, Junping & Zuo, Shuangying & Chen, Shiwan & Liu, Zhengjie & Yin, Hong & Li, Ye, 2022. "Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery," Energy, Elsevier, vol. 242(C).
- Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
- Lu, Yanjun & Han, Jinxuan & Yang, Manping & Chen, Xingyu & Zhu, Hongjian & Yang, Zhaozhong, 2023. "Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM," Energy, Elsevier, vol. 266(C).
- Shi, Qingmin & Cui, Shidong & Wang, Shuangming & Mi, Yichen & Sun, Qiang & Wang, Shengquan & Shi, Chenyu & Yu, Jizhou, 2022. "Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment," Energy, Elsevier, vol. 254(PA).
- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
- Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
- Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
- An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
- Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
- Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
- Chengkai Fan & Qi Li & Jianli Ma & Duoxing Yang, 2019. "Fiber Bragg grating‐based experimental and numerical investigations of CO2 migration front in saturated sandstone under subcritical and supercritical conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 106-124, February.
- Xiao Sun & Qi Cheng & Jiren Tang & Xing Guo & Yunzhong Jia & Jingfu Mu & Guilin Zhao & Yalu Liu, 2023. "Assessment of the CO 2 Geological Storage Potential of Yanchang Shale Gas Formation (Chang7 Member) Considering the Capillary Sealing Capability of Caprock," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
- Xu, Chao & Wang, Wenjing & Wang, Kai & Zhou, Aitao & Guo, Lin & Yang, Tong, 2023. "Filling–adsorption mechanism and diffusive transport characteristics of N2/CO2 in coal: Experiment and molecular simulation," Energy, Elsevier, vol. 282(C).
- Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
- Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
- Sean P. Rigby & Ali Alsayah & Richard Seely, 2022. "Impact of Exposure to Supercritical Carbon Dioxide on Reservoir Caprocks and Inter-Layers during Sequestration," Energies, MDPI, vol. 15(20), pages 1-34, October.
- Yang, Xin & Wang, Gongda & Du, Feng & Jin, Longzhe & Gong, Haoran, 2022. "N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation," Energy, Elsevier, vol. 239(PC).
- Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
- Chen, Kang & Liu, Xianfeng & Nie, Baisheng & Zhang, Chengpeng & Song, Dazhao & Wang, Longkang & Yang, Tao, 2022. "Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2," Energy, Elsevier, vol. 248(C).
More about this item
Keywords
Shale gas; Supercritical carbon dioxide; Desorption kinetics; Diffusion coefficient; CO2 enhanced shale gas recovery;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023386. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.