IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5489-d628073.html
   My bibliography  Save this article

Performance of Pure Crossflow Heat Exchanger in Sensible Heat Transfer Application

Author

Listed:
  • Karthik Silaipillayarputhur

    (Department of Mechanical Engineering, King Faisal University, Al Ahsa 31982, Saudi Arabia)

  • Tawfiq Al-Mughanam

    (Department of Mechanical Engineering, King Faisal University, Al Ahsa 31982, Saudi Arabia)

Abstract

All process industries involve the usage of heat exchanger equipment and understanding its performance during the design phase is very essential. The present research work specifies the performance of a pure cross flow heat exchanger in terms of dimensionless factors such as number of transfer units, capacity rate ratio, and heat exchanger effectiveness. Steady state sensible heat transfer was considered in the analysis. The matrix approach that was established in the earlier work was used in the study. The results were depicted in the form of charts, tables, and performance equations. It was observed that indeterminately increasing the number of transfer units past a threshold limit provided very marginal improvement in the performance of a pure cross flow heat exchanger. Likewise, flow pattern in a heat exchanger is usually assumed either as mixed or unmixed. However, due to various operating conditions, partially mixed conditions do exist. This work considers partially mixed conditions in the tube side of the heat exchanger. The correction factor for heat exchanger effectiveness was developed to accommodate partially mixed flow conditions in the pure cross flow heat exchanger.

Suggested Citation

  • Karthik Silaipillayarputhur & Tawfiq Al-Mughanam, 2021. "Performance of Pure Crossflow Heat Exchanger in Sensible Heat Transfer Application," Energies, MDPI, vol. 14(17), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5489-:d:628073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Ding & Qiang Guo & Wenyuan Guo & Wenxiao Chu & Qiuwang Wang, 2024. "Review of Recent Applications of Heat Pipe Heat Exchanger Use for Waste Heat Recovery," Energies, MDPI, vol. 17(11), pages 1-28, May.
    2. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    3. Robert Ștefan Vizitiu & Ștefănica Eliza Vizitiu & Andrei Burlacu & Chérifa Abid & Marius Costel Balan & Nicoleta Elena Kaba, 2024. "Experimental Investigation of a Water–Air Heat Recovery System," Sustainability, MDPI, vol. 16(17), pages 1-11, September.
    4. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
    5. Wu, Zhiyong & Lu, Zhibin & Zhang, Bingjian & He, Chang & Chen, Qinglin & Yu, Haoshui & Ren, Jingzheng, 2022. "Stochastic bi-objective optimization for closed wet cooling tower systems based on a simplified analytical model," Energy, Elsevier, vol. 250(C).
    6. Kang, Sukkyung & Kim, Kyuil & Seo, JinHyeuk & Lee, Jungho, 2024. "Empirical modeling and experimental validation of gas-to-liquid heat pipe heat exchanger with baffles," Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5489-:d:628073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.