IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220326852.html
   My bibliography  Save this article

Determinants of off-grid electrification choice and expenditure: Evidence from Bangladesh

Author

Listed:
  • Aziz, Shakila
  • Chowdhury, Shahriar Ahmed

Abstract

Mini-grids providing higher tier electricity services are often introduced in areas with existing solar home systems (SHS). This raises the questions of competition among different options, commercial viability of the mini-grids, or a duplication of highly subsidized resources. A survey of 477 households in off-grid areas of Bangladesh was conducted to find out factors affecting the households’ choice of domestic electricity. The study utilizes a multinomial logit model to investigate how household demographic, educational, income, wealth and infrastructure factors affect electricity choice in off-grid areas, and a Heckman two stage model to explore how these factors affect energy stacking. Finally, a Tobit model and a Heckman model are used to find out how household characteristics affect the expenditure on electricity from solar mini-grids (SMG). It was found that the level of female education in the family leads to the choice of higher tier clean electricity services, whereas male education influences the total expenditure on electricity. Property ownership predicts choice of higher tier electricity access. Households with more income and higher education of males stack solar home systems with mini-grid connection. Stacking households actually spend more on mini-grid electricity. The findings of the study has implications on energy policy and investment for off-grid rural electrification and energy poverty alleviation.

Suggested Citation

  • Aziz, Shakila & Chowdhury, Shahriar Ahmed, 2021. "Determinants of off-grid electrification choice and expenditure: Evidence from Bangladesh," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326852
    DOI: 10.1016/j.energy.2020.119578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aldy, Joseph Edgar & Leiserowitz, Anthony A & Kotchen, Matthew J, 2012. "Willingness to Pay and Political Support for a U.S. National Clean Energy Standard," Scholarly Articles 8832942, Harvard Kennedy School of Government.
    2. Narayan, Nishant & Chamseddine, Ali & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2019. "Exploring the boundaries of Solar Home Systems (SHS) for off-grid electrification: Optimal SHS sizing for the multi-tier framework for household electricity access," Applied Energy, Elsevier, vol. 240(C), pages 907-917.
    3. Paudel, Uttam & Khatri, Umesh & Pant, Krishna Prasad, 2018. "Understanding the determinants of household cooking fuel choice in Afghanistan: A multinomial logit estimation," Energy, Elsevier, vol. 156(C), pages 55-62.
    4. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    5. Zhang, Lei & Wu, Yang, 2012. "Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province," Energy Policy, Elsevier, vol. 51(C), pages 514-523.
    6. Sehjpal, Ritika & Ramji, Aditya & Soni, Anmol & Kumar, Atul, 2014. "Going beyond incomes: Dimensions of cooking energy transitions in rural India," Energy, Elsevier, vol. 68(C), pages 470-477.
    7. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    8. Hosier, Richard H. & Dowd, Jeffrey, 1987. "Household fuel choice in Zimbabwe : An empirical test of the energy ladder hypothesis," Resources and Energy, Elsevier, vol. 9(4), pages 347-361, December.
    9. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    10. Joseph E. Aldy & Matthew J. Kotchen & Anthony A. Leiserowitz, 2012. "Willingness to pay and political support for a US national clean energy standard," Nature Climate Change, Nature, vol. 2(8), pages 596-599, August.
    11. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    12. Mottaleb, Khondoker Abdul & Rahut, Dil Bahadur & Ali, Akhter, 2017. "An exploration into the household energy choice and expenditure in Bangladesh," Energy, Elsevier, vol. 135(C), pages 767-776.
    13. Alem, Yonas & Beyene, Abebe D. & Köhlin, Gunnar & Mekonnen, Alemu, 2016. "Modeling household cooking fuel choice: A panel multinomial logit approach," Energy Economics, Elsevier, vol. 59(C), pages 129-137.
    14. Harajli, Hassan & Gordon, Fabiana, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 2. The case of the Lebanese commercial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1643-1649.
    15. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Household energy choice and consumption intensity: Empirical evidence from Bhutan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 993-1009.
    16. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    17. Kojima, Masami & Bacon, Robert & Zhou, Xin, 2011. "Who uses bottled gas ? evidence from households in developing countries," Policy Research Working Paper Series 5731, The World Bank.
    18. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    19. Abdullah, Sabah & Jeanty, P. Wilner, 2011. "Willingness to pay for renewable energy: Evidence from a contingent valuation survey in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2974-2983, August.
    20. Roy, Apratim & Kabir, Md. Ashfanoor, 2012. "Relative life cycle economic analysis of stand-alone solar PV and fossil fuel powered systems in Bangladesh with regard to load demand and market controlling factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4629-4637.
    21. Adusah-Poku, Frank & Takeuchi, Kenji, 2019. "Household energy expenditure in Ghana: A double-hurdle model approach," World Development, Elsevier, vol. 117(C), pages 266-277.
    22. Hoff, Ayoe, 2007. "Second stage DEA: Comparison of approaches for modelling the DEA score," European Journal of Operational Research, Elsevier, vol. 181(1), pages 425-435, August.
    23. Alam, Majbaul & Bhattacharyya, Subhes, 2017. "Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh," Energy, Elsevier, vol. 139(C), pages 433-446.
    24. Pundo, Moses O. & Fraser, Gavin C.G., 2006. "Multinominal logit analysis of household cooking fuel choice in rural Kenya: The case of Kisumu district," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 45(1), pages 1-14, March.
    25. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    26. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    27. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2017. "Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 661-672.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aziz, Shakila & Barua, Suborna & Chowdhury, Shahriar Ahmed, 2022. "Cooking energy use in Bangladesh: Evidence from technology and fuel choice," Energy, Elsevier, vol. 250(C).
    2. Wassie, Yibeltal T. & Ahlgren, Erik O., 2024. "Understanding the load profiles and electricity consumption patterns of PV mini-grid customers in rural off-grid east africa: A data-driven study," Energy Policy, Elsevier, vol. 185(C).
    3. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    4. Ali, Tausif & Aghaloo, Kamaleddin & Chiu, Yie-Ru & Ahmad, Munir, 2022. "Lessons learned from the COVID-19 pandemic in planning the future energy systems of developing countries using an integrated MCDM approach in the off-grid areas of Bangladesh," Renewable Energy, Elsevier, vol. 189(C), pages 25-38.
    5. Nathanael Ojong, 2021. "Solar Home Systems in South Asia: Examining Adoption, Energy Consumption, and Social Practices," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    6. Wen, Cheng & Lovett, Jon C. & Kwayu, Emmanuel J. & Msigwa, Consalva, 2023. "Off-grid households’ preferences for electricity services: Policy implications for mini-grid deployment in rural Tanzania," Energy Policy, Elsevier, vol. 172(C).
    7. Rahaman, Mohammad Mijanur & Islam, Md. Monirul & Polbitsyn, Sergei Nikolaevich & Abbas, Shujaat, 2024. "The electrification-social development nexus in Bangladesh: Do governmental policies matter?," Utilities Policy, Elsevier, vol. 86(C).
    8. Najeeb, A. & Sridharan, S. & Rao, A.B. & Agnihotri, S.B. & Mishra, V., 2024. "Determinants of residential electricity consumption in South, East and South East Asia: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    9. Liu, Pihui & Han, Chuanfeng & Liu, Xinghua & Teng, Minmin, 2023. "Assessing the effect of nonfarm income on the household cooking energy transition in rural China," Energy, Elsevier, vol. 267(C).
    10. Wassie, Yibeltal T. & Ahlgren, Erik O., 2023. "Determinants of electricity consumption from decentralized solar PV mini-grids in rural East Africa: An econometric analysis," Energy, Elsevier, vol. 274(C).
    11. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koirala, Dhiroj Prasad & Acharya, Bikram, 2022. "Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal," Energy Policy, Elsevier, vol. 162(C).
    2. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    3. Liu, Pihui & Han, Chuanfeng & Liu, Xinghua & Teng, Minmin, 2023. "Assessing the effect of nonfarm income on the household cooking energy transition in rural China," Energy, Elsevier, vol. 267(C).
    4. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    5. Kuo, Ying-Min & Azam, Mehtabul, 2019. "Household Cooking Fuel Choice in India, 2004-2012: A Panel Multinomial Analysis," IZA Discussion Papers 12682, Institute of Labor Economics (IZA).
    6. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Kojo Sarfo Gyamfi & Elena Gaura & James Brusey & Alessandro Bezerra Trindade & Nandor Verba, 2020. "Understanding Household Fuel Choice Behaviour in the Amazonas State, Brazil: Effects of Validation and Feature Selection," Energies, MDPI, vol. 13(15), pages 1-21, July.
    8. Zi, Cao & Qian, Meng & Baozhong, Gao, 2021. "The consumption patterns and determining factors of rural household energy: A case study of Henan Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    10. Zheng, Linyi, 2023. "Impact of off-farm employment on cooking fuel choices: Implications for rural-urban transformation in advancing sustainable energy transformation," Energy Economics, Elsevier, vol. 118(C).
    11. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Ajayi, O.D. & Yusuff, A.A. & Mosetlhe, T.C., 2021. "Willingness to pay for green electricity derived from renewable energy sources in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Gupta, Ridhima & Pelli, Martino, 2021. "Electrification and cooking fuel choice in rural India," World Development, Elsevier, vol. 146(C).
    13. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    14. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).
    15. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    16. Liu, Ziming & Li, Jia & Rommel, Jens & Feng, Shuyi, 2020. "Health impacts of cooking fuel choice in rural China," Energy Economics, Elsevier, vol. 89(C).
    17. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    18. Alananga, Samwel Sanga & Igangula, Nurdin Husama, 2022. "Constrained cooking energy choices: Understanding up-the-ladder stacking behaviour in Dar es Salaam Tanzania," Energy Policy, Elsevier, vol. 168(C).
    19. Zhu, Xiaodong & Zhu, Zheng & Zhu, Bangzhu & Wang, Ping, 2022. "The determinants of energy choice for household cooking in China," Energy, Elsevier, vol. 260(C).
    20. Martey, Edward & Etwire, Prince Maxwell & Adusah-Poku, Frank & Akoto, Isaac, 2022. "Off-farm work, cooking energy choice and time poverty in Ghana: An empirical analysis," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.