IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v185y2024ics0301421523005542.html
   My bibliography  Save this article

Understanding the load profiles and electricity consumption patterns of PV mini-grid customers in rural off-grid east africa: A data-driven study

Author

Listed:
  • Wassie, Yibeltal T.
  • Ahlgren, Erik O.

Abstract

This paper analyzes the load profiles and electricity consumption patterns of different customer types electrified by off-grid solar photovoltaic (PV) mini-grids in two remote towns in Ethiopia using metered data collected over a 20-month period and a survey of 238 customers. Findings show that the load profiles of mini-grid customers differ significantly across locations, sectors, and time. The load curves at site one (Omorate) are interrupted and completely shed off for 13 h every day due to the demand consistently exceeding the generation. By contrast, the mini-grid at site two (Tum) generates enough electricity to meet the demand continuously. The average daily electricity consumption at Omorate, 1065 kW h, is more than 1.5 times the consumption at Tum, 640 kW h; despite the fact that the mini-grid at Omorate has a significantly lower installed capacity than the one at Tum. At both sites, the monthly consumption of productive users is more than three times that of households. At both sites, demand for electricity has significantly increased over time, but at varying rates. Regression analyses showed significant differences in the factors influencing electricity consumption between the two towns. Key policy implications of the study are discussed for informed planning of rural electrification through mini-grids.

Suggested Citation

  • Wassie, Yibeltal T. & Ahlgren, Erik O., 2024. "Understanding the load profiles and electricity consumption patterns of PV mini-grid customers in rural off-grid east africa: A data-driven study," Energy Policy, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:enepol:v:185:y:2024:i:c:s0301421523005542
    DOI: 10.1016/j.enpol.2023.113969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523005542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrawal, Shalu & Harish, S.P. & Mahajan, Aseem & Thomas, Daniel & Urpelainen, Johannes, 2020. "Influence of improved supply on household electricity consumption - Evidence from rural India," Energy, Elsevier, vol. 211(C).
    2. Ye, Yuxiang & Koch, Steven F. & Zhang, Jiangfeng, 2018. "Determinants of household electricity consumption in South Africa," Energy Economics, Elsevier, vol. 75(C), pages 120-133.
    3. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Household energy choice and consumption intensity: Empirical evidence from Bhutan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 993-1009.
    4. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    5. Peters, Jörg & Sievert, Maximiliane & Toman, Michael A., 2019. "Rural electrification through mini-grids: Challenges ahead," Energy Policy, Elsevier, vol. 132(C), pages 27-31.
    6. Sijousa Basumatary & Mridula Devi & Konita Basumatary, 2021. "Determinants of Household Electricity Demand in Rural India: A Case Study of the Impacts of Government Subsidies and Surcharges," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 243-249.
    7. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    8. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    9. Nigel Scott & William Coley, 2021. "Understanding Load Profiles of Mini-Grid Customers in Tanzania," Energies, MDPI, vol. 14(14), pages 1-17, July.
    10. Mathilde Brix Pedersen, 2016. "Deconstructing the concept of renewable energy-based mini-grids for rural electrification in East Africa," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(5), pages 570-587, September.
    11. Gaunt, C. T., 2005. "Meeting electrification's social objectives in South Africa, and implications for developing countries," Energy Policy, Elsevier, vol. 33(10), pages 1309-1317, July.
    12. Aziz, Shakila & Chowdhury, Shahriar Ahmed, 2021. "Determinants of off-grid electrification choice and expenditure: Evidence from Bangladesh," Energy, Elsevier, vol. 219(C).
    13. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter & Marenya, Paswel, 2017. "A ladder within a ladder: Understanding the factors influencing a household's domestic use of electricity in four African countries," Energy Economics, Elsevier, vol. 66(C), pages 167-181.
    14. Zou, Baoling & Luo, Biliang, 2019. "Rural household energy consumption characteristics and determinants in China," Energy, Elsevier, vol. 182(C), pages 814-823.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wassie, Yibeltal T. & Ahlgren, Erik O., 2023. "Determinants of electricity consumption from decentralized solar PV mini-grids in rural East Africa: An econometric analysis," Energy, Elsevier, vol. 274(C).
    2. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    3. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    4. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    5. Subhes C. Bhattacharyya, 2018. "Mini-Grids for the Base of the Pyramid Market: A Critical Review," Energies, MDPI, vol. 11(4), pages 1-21, April.
    6. Andrés González-García & Pedro Ciller & Stephen Lee & Rafael Palacios & Fernando de Cuadra García & José Ignacio Pérez-Arriaga, 2022. "A Rising Role for Decentralized Solar Minigrids in Integrated Rural Electrification Planning? Large-Scale, Least-Cost, and Customer-Wise Design of Grid and Off-Grid Supply Systems in Uganda," Energies, MDPI, vol. 15(13), pages 1-31, June.
    7. Rahut, Dil Bahadur & Aryal, Jeetendra Prakash & Chhay, Panharoth & Sonobe, Tetsushi, 2022. "Ethnicity/caste-based social differentiation and the consumption of clean cooking energy in Nepal: An exploration using panel data," Energy Economics, Elsevier, vol. 112(C).
    8. Liu, Pihui & Han, Chuanfeng & Liu, Xinghua & Teng, Minmin, 2023. "Assessing the effect of nonfarm income on the household cooking energy transition in rural China," Energy, Elsevier, vol. 267(C).
    9. Huaquan Zhang & Yashuang Tang & Martinson Ankrah Twumasi & Abbas Ali Chandio & Lili Guo & Ruixin Wan & Shilei Pan & Yun Shen & Ghulam Raza Sargani, 2022. "The Effects of Ecological Public Welfare Jobs on the Usage of Clean Energy by Farmers: Evidence from Tibet Areas—China," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    10. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    11. Alexandros Korkovelos & Hisham Zerriffi & Mark Howells & Morgan Bazilian & H-Holger Rogner & Francesco Fuso Nerini, 2020. "A Retrospective Analysis of Energy Access with a Focus on the Role of Mini-Grids," Sustainability, MDPI, vol. 12(5), pages 1-29, February.
    12. Zhu, Xiaodong & Zhu, Zheng & Zhu, Bangzhu & Wang, Ping, 2022. "The determinants of energy choice for household cooking in China," Energy, Elsevier, vol. 260(C).
    13. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    14. Sesan, Temilade & Uduka, Unico & Baker, Lucy & Ugwu, Okechukwu & Eleri, Ewah & Bhattacharyya, Subhes, 2024. "Exploring the connections between mini-grid market regulation and energy access expansion: The case of Nigeria," Energy Policy, Elsevier, vol. 184(C).
    15. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    16. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    17. Shi, Xinjie & Cui, Liu & Huang, Zuhui & Zeng, Pei & Qiu, Tongwei & Fu, Linlin & Jiang, Qiang, 2023. "Impact of internal migration on household energy poverty: Empirical evidence from rural China," Applied Energy, Elsevier, vol. 350(C).
    18. Han, Jiashi & Zhang, Lei & Li, Yang, 2022. "Spatiotemporal analysis of rural energy transition and upgrading in developing countries: The case of China," Applied Energy, Elsevier, vol. 307(C).
    19. Mugisha, Joshua & Ratemo, Mike Arasa & Bunani Keza, Bienvenu Christian & Kahveci, Hayriye, 2021. "Assessing the opportunities and challenges facing the development of off-grid solar systems in Eastern Africa: The cases of Kenya, Ethiopia, and Rwanda," Energy Policy, Elsevier, vol. 150(C).
    20. Wang, Menghan & Liu, Zhong & Xu, Aiyan & Yang, Dan, 2022. "Fuel choice for rural Tibetan households: Impacts of access to credit," Energy Economics, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:185:y:2024:i:c:s0301421523005542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.