IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas0360544220322453.html
   My bibliography  Save this article

In-situ investigation of coal particle fragmentation induced by thermal stress and numerical analysis of the main influencing factors

Author

Listed:
  • Zhong, Shan
  • Yue, Hairong
  • Baitalow, Felix
  • Reinmöller, Markus
  • Meyer, Bernd

Abstract

Particle fragmentation influences thermochemical coal conversion processes in different ways, which is of great significance for process design and control. Different mechanisms are proposed for fragmentation characterization, but direct and substantial optical evidence supporting these theories is rarely reported. In the present study, the fragmentation process of two anthracites with low volatiles is investigated in-situ with the aid of an optical system. The observed fragmentation phenomenon confirms that the thermal stress is the main driving force for the fragmentation of the investigated anthracite particles. Together with a model analysis, a fragmentation pattern different from previous reports is proposed. The tensile stress causes the particles to fragment from the center. Fine particles are produced by multiple tensile failure rather than by the spalling of particles’ outer shell caused by compressive stress. Based on the model, the impact of various process- and particle-related factors on the maximum thermal tensile stress and its appearance time are quantitatively evaluated, which significantly reduces the required time and effort in comparison to experimental analysis of the fragmentation. This study provides direct visual evidence and numerical validation of the fragmentation mechanism, which can be utilized to predict the coal particle behavior and the resulting particle size distribution.

Suggested Citation

  • Zhong, Shan & Yue, Hairong & Baitalow, Felix & Reinmöller, Markus & Meyer, Bernd, 2021. "In-situ investigation of coal particle fragmentation induced by thermal stress and numerical analysis of the main influencing factors," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322453
    DOI: 10.1016/j.energy.2020.119138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ting & Lin, Baiquan & Fu, Xuehai & Gao, Yabin & Kong, Jia & Zhao, Yang & Song, Haoran, 2020. "Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam," Energy, Elsevier, vol. 195(C).
    2. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    3. Cong, Kunlin & Zhang, Yanguo & Han, Feng & Li, Qinghai, 2019. "Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere," Energy, Elsevier, vol. 170(C), pages 840-848.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Kun & Ouyang, Ziqu & Ding, Hongliang & Wang, Wenyu & Zhang, Jinyang & Wang, Hongshuai & Zhu, Shujun, 2023. "Experimental investigation on effect of external circulation system on preheating characteristics of pulverized coal," Energy, Elsevier, vol. 278(C).
    2. Su, Kun & Ouyang, Ziqu & Wang, Hongshuai & Ding, Hongliang & Zhang, Jinyang & Wang, Wenyu, 2024. "Effects of activated fuel and staged secondary air distributions on purification, combustion and NOx emission characteristics of pulverized coal with purification-combustion technology," Energy, Elsevier, vol. 302(C).
    3. Klimenko, A. & Shlegel, N.E. & Strizhak, P.A., 2023. "Breakup of colliding droplets and particles produced by heavy fuel oil pyrolysis," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liang & Wu, Songwei & Li, Ziwei & An, Fenghua & Lu, Zhuang & Su, Sheng & Jiang, Changbao, 2024. "Diffusion distance variations in coal pulverization based on equivalent matrix size: Implications for coal and gas outburst indicators," Energy, Elsevier, vol. 305(C).
    2. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    3. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
    4. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    5. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    6. Li, Zhongbei & Ren, Ting & Li, Xiangchun & Cheng, Yuanping & He, Xueqiu & Lin, Jia & Qiao, Ming & Yang, Xiaohan, 2023. "Full-scale pore structure characterization of different rank coals and its impact on gas adsorption capacity: A theoretical model and experimental study," Energy, Elsevier, vol. 277(C).
    7. Miao, Hengyang & Wang, Zhiqing & Wang, Zhefan & Sun, Haochen & Li, Xiangyu & Liu, Zheyu & Dong, Libo & Zhao, Jiantao & Huang, Jiejie & Fang, Yitian, 2022. "Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue," Energy, Elsevier, vol. 255(C).
    8. Li, Fenghai & Zhao, Wei & Li, Junguo & Fan, Hongli & Xu, Meiling & Han, Guopeng & Guo, Mingxi & Wang, Zhiqing & Huang, Jiejie & Fang, Yitian, 2023. "Investigation on influencing mechanisms of phosphogypsum (PG) on the ash fusion behaviors of coal," Energy, Elsevier, vol. 268(C).
    9. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    10. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    11. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    12. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    13. Cheng, Ming & Fu, Xuehai & Chen, Zhaoying & Liu, Ting & Zhang, Miao & Kang, Junqiang, 2023. "A new approach to evaluate abandoned mine methane resources based on the zoning of the mining-disturbed strata," Energy, Elsevier, vol. 274(C).
    14. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Mechanical degradation model of porous coal with water intrusion," Energy, Elsevier, vol. 278(C).
    15. Jie Zheng & Qinming Liang & Xin Zhang & Jinyong Huang & Wei Yan & Gun Huang & Honglin Liu, 2023. "On Gas Desorption-Diffusion Regularity of Bituminous Coal with Different Particle Sizes and Its Influence on Outburst-Coal Breaking," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    16. Li, Guangyu & Xu, Shisen & Zhao, Xuebin & Sun, Ruijin & Wang, Chang’an & Liu, Kang & Mao, Qisen & Che, Defu, 2020. "Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier," Energy, Elsevier, vol. 194(C).
    17. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "A micro-macro coupled permeability model for gas transport in coalbed methane reservoirs," Energy, Elsevier, vol. 284(C).
    18. Nematollahi, Maryam & Sadeghi, Sadegh & Rasam, Hamed & Bidabadi, Mehdi, 2020. "Analytical modelling of counter-flow non-premixed combustion of coal particles under non-adiabatic conditions taking into account trajectory of particles," Energy, Elsevier, vol. 192(C).
    19. Li, Meng & Wu, Hao & Xu, Jianliang & Yu, Guangsuo & Chen, Xueli, 2023. "Exploring influence of MgO/SiO2 on viscosity-temperature property of coal ash slags under entrained flow gasification condition," Energy, Elsevier, vol. 284(C).
    20. Zhang, Xiangliang & Jian, Shen & Lin, Baiquan & Zhu, Chuanjie, 2023. "Study on the influence of different-voltage plasma breakdowns on functional group structures in coal," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.