Study on crystal growth and aggregated microstructure of natural gas hydrate under flow conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118999
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
- Chen, Jun & Chen, Guang-Jin & Yuan, Qing & Deng, Bin & Tao, Li-Ming & Li, Chuan-Hua & Xiao, Sheng-Xiong & Jiang, Jian-Hong & Li, Xu & Li, Jia-Yuan, 2019. "Insights into induction time and agglomeration of methane hydrate formation in diesel oil dominated dispersed systems," Energy, Elsevier, vol. 170(C), pages 604-610.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zi-Jie Ning & Hong-Feng Lu & Shao-Fei Zheng & Dong-Hui Xing & Xian Li & Lei Liu, 2023. "Modeling and Numerical Investigations of Gas Production from Natural Gas Hydrates," Energies, MDPI, vol. 16(20), pages 1-17, October.
- Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
- Liu, Jia & Lin, Decai & Liang, Deqing & Li, Junhui & Song, Zhiguang, 2023. "Effect of cocoamidopropyl betaine on CH4 hydrate formation and agglomeration in waxy oil-water systems," Energy, Elsevier, vol. 270(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Xuebing & Kang, Zhanxiao & Lu, Jingsheng & Fan, Jintu & Zang, Xiaoya & Liang, Deqing, 2023. "Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics," Applied Energy, Elsevier, vol. 336(C).
- Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
- Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
- Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
- Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
- Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
- Sungil Kim & Kyungbook Lee & Minhui Lee & Taewoong Ahn, 2020. "Data-Driven Three-Phase Saturation Identification from X-ray CT Images with Critical Gas Hydrate Saturation," Energies, MDPI, vol. 13(21), pages 1-19, November.
- Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
- Liu, Jia & Lin, Decai & Liang, Deqing & Li, Junhui & Song, Zhiguang, 2023. "Effect of cocoamidopropyl betaine on CH4 hydrate formation and agglomeration in waxy oil-water systems," Energy, Elsevier, vol. 270(C).
- Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
- Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
- Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
- Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
- Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
- Le, Quang-Du & Rodriguez, Carla T. & Legoix, Ludovic N. & Pirim, Claire & Chazallon, Bertrand, 2020. "Influence of the initial CH4-hydrate system properties on CO2 capture kinetics," Applied Energy, Elsevier, vol. 280(C).
- Wang, Shuai & Sun, Huilian & Liu, Huiquan & Xi, Dezhi & Long, Jiayi & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Shi, Changrui & Ling, Zheng, 2024. "Novel vermiculite/tannic acid composite aerogels with outstanding CO2 storage via enhanced gas hydrate formation," Energy, Elsevier, vol. 289(C).
- Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
- Mok, Junghoon & Choi, Wonjung & Lee, Jonghyuk & Seo, Yongwon, 2022. "Effects of pressure and temperature conditions on thermodynamic and kinetic guest exchange behaviors of CH4 − CO2 + N2 replacement for energy recovery and greenhouse gas storage," Energy, Elsevier, vol. 239(PB).
- Zhou, Xuebing & Li, Dongliang & Zhang, Shaohong & Liang, Deqing, 2017. "Swapping methane with carbon dioxide in spherical hydrate pellets," Energy, Elsevier, vol. 140(P1), pages 136-143.
More about this item
Keywords
Natural gas hydrate; Growth; Aggregation; Microscopic morphology; Physical model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s036054422032106x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.