IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220318958.html
   My bibliography  Save this article

Study on non-isothermal moisture transfer characteristics of hygroscopic building materials: From parameter characterization to model analysis

Author

Listed:
  • Wang, Xiaoyu
  • Jin, Xing
  • Yin, Yonggao
  • Wang, Xinyu
  • Shi, Xing
  • Zhou, Xin

Abstract

The heat and moisture transfer in building materials has significant effects on the energy consumption and indoor thermal comfort. In this paper, an improved heat and moisture transfer model based on temperature gradient coefficient (TGC) and phase change criterion (PCC) was built. The effects of relative humidity and temperature on liquid water conductivity, moisture diffusivity and TGC were considered and discussed. A new moisture transfer characteristic index called the temperature gradient factor (TGF) was proposed. It presents the ratio between the moisture flux due to temperature gradient and the total moisture flux. The PCC was introduced to quantify the significance of the vapor flux relative to the total moisture flux. Based on the improved model and two moisture transfer characteristic indexes (i.e., TGF and PCC), two series simulations were conducted to investigate the non-isothermal moisture transfer characteristics of cellulose insulation. The results showed that the liquid water conductivity was independent of temperature. The liquid water transfer could be ignored when the relative humidity in the cellulose insulation was less than 60%. Also, the liquid water transfer due to temperature gradient could be ignored when the relative humidity was larger than 60%.

Suggested Citation

  • Wang, Xiaoyu & Jin, Xing & Yin, Yonggao & Wang, Xinyu & Shi, Xing & Zhou, Xin, 2020. "Study on non-isothermal moisture transfer characteristics of hygroscopic building materials: From parameter characterization to model analysis," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318958
    DOI: 10.1016/j.energy.2020.118788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yingying & Zhao, Zejiao & Liu, Yanfeng & Wang, Dengjia & Ma, Chao & Liu, Jiaping, 2019. "Comprehensive correction of thermal conductivity of moist porous building materials with static moisture distribution and moisture transfer," Energy, Elsevier, vol. 176(C), pages 103-118.
    2. Zhang, Chong & Wang, Jinbo & Li, Liao & Gang, Wenjie, 2019. "Dynamic thermal performance and parametric analysis of a heat recovery building envelope based on air-permeable porous materials," Energy, Elsevier, vol. 189(C).
    3. Bastien, Diane & Winther-Gaasvig, Martin, 2018. "Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope," Energy, Elsevier, vol. 164(C), pages 288-297.
    4. Aadmi, Moussa & Karkri, Mustapha & El Hammouti, Mimoun, 2014. "Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations," Energy, Elsevier, vol. 72(C), pages 381-392.
    5. Medina, Mario A. & King, Jennifer B. & Zhang, Meng, 2008. "On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs)," Energy, Elsevier, vol. 33(4), pages 667-678.
    6. Yan, Tian & Sun, Zhongwei & Xu, Xinhua & Wan, Hang & Huang, Gongsheng, 2019. "Development of a simplified dynamic moisture transfer model of building wall layer of hygroscopic material," Energy, Elsevier, vol. 183(C), pages 1278-1294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaoyu & Jin, Xing & Yin, Yonggao & Shi, Xing & Zhou, Xin, 2021. "A transient heat and moisture transfer model for building materials based on phase change criterion under isothermal and non-isothermal conditions," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoyu & Jin, Xing & Yin, Yonggao & Shi, Xing & Zhou, Xin, 2021. "A transient heat and moisture transfer model for building materials based on phase change criterion under isothermal and non-isothermal conditions," Energy, Elsevier, vol. 224(C).
    2. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    3. Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
    4. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    5. Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
    6. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    7. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    8. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    9. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
    10. Wang, Yi-Hsien & Yang, Yue-Tzu, 2011. "Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink," Energy, Elsevier, vol. 36(8), pages 5214-5224.
    11. O’Connor, William E. & Warzoha, Ronald & Weigand, Rebecca & Fleischer, Amy S. & Wemhoff, Aaron P., 2014. "Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point," Applied Energy, Elsevier, vol. 132(C), pages 496-506.
    12. Guo, Jiwei & Dong, Jiankai & Wang, Hongjue & Wang, Yuan & Zou, Bin & Jiang, Yiqiang, 2022. "Study on the demand response potential of an actively ventilated building: Parametric and scenario analysis," Energy, Elsevier, vol. 238(PC).
    13. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    14. Xie, Xing & Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2022. "Study based on “Heat Flux - Energy Saving Pointer”: Exploring why phase change materials is not energy efficient enough on internal wall in cold region," Renewable Energy, Elsevier, vol. 196(C), pages 1308-1324.
    15. Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
    16. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    17. M. M. Mousa & A. M. Bayomy & M. Z. Saghir, 2020. "Experimental and Numerical Study on Energy Piles with Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-21, September.
    18. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process," Energy, Elsevier, vol. 79(C), pages 337-350.
    20. Mehdaoui, Farah & Hazami, Majdi & Messaouda, Anis & Taghouti, Hichem & Guizani, AmenAllah, 2019. "Thermal testing and numerical simulation of PCM wall integrated inside a test cell on a small scale and subjected to the thermal stresses," Renewable Energy, Elsevier, vol. 135(C), pages 597-607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.