IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220313876.html
   My bibliography  Save this article

Sustainable hydrogen production from oil palm derived wastes through autothermal operation of supercritical water gasification system

Author

Listed:
  • Ruya, Petric Marc
  • Lim, Siew Shee
  • Purwadi, Ronny
  • Zunita, Megawati

Abstract

Hydrogen generation from empty fruit bunch and palm oil mill effluent through supercritical water gasification was studied on system level. The effect of alternative H2 separation process (Palladium Membrane or Pressure Swing Adsorption), H2S adsorption (zinc oxide or activated carbon) and inclusion of steam methane reformer on net H2 yield and system efficiency were examined under auto-thermal operation. Waste heat recovery by generating low pressure steam utilizable in palm oil mill were conducted to minimize exergy loss. At the lowest biomass concentration considered in this study (15 wt% empty fruit bunch), inclusion of steam methane reformer reduced the net H2 yield as product gas was mainly used as fuel. However, at high biomass concentration (25 wt% empty fruit bunch and palm oil mill effluent), the net H2 yield increased by up to 98%. Energy efficiency of 70% (without reformer) and 58.3% (with reformer) was achieved using high biomass concentration under optimal operating condition for H2 production. Exergy analysis revealed that 62.5–70.8% of total exergy loss was attributed to furnace and gasifier. Energy utilization diagram further revealed about 72–87% of the unit exergy loss was attributed to feed preheating. Waste heat recovery through steam generation raised the system efficiency by 5–18%.

Suggested Citation

  • Ruya, Petric Marc & Lim, Siew Shee & Purwadi, Ronny & Zunita, Megawati, 2020. "Sustainable hydrogen production from oil palm derived wastes through autothermal operation of supercritical water gasification system," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220313876
    DOI: 10.1016/j.energy.2020.118280
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pipatmanomai, Suneerat & Kaewluan, Sommas & Vitidsant, Tharapong, 2009. "Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm," Applied Energy, Elsevier, vol. 86(5), pages 669-674, May.
    2. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    3. Rahbari, Alireza & Venkataraman, Mahesh B. & Pye, John, 2018. "Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass," Applied Energy, Elsevier, vol. 228(C), pages 1669-1682.
    4. Gutiérrez Ortiz, F.J. & Ollero, P. & Serrera, A. & Galera, S., 2012. "Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water," Energy, Elsevier, vol. 42(1), pages 192-203.
    5. Ishida, Masaru, 2000. "Hierarchical structure of thermodynamics," Applied Energy, Elsevier, vol. 67(1-2), pages 221-230, September.
    6. Hajjaji, Noureddine & Pons, Marie-Noëlle & Houas, Ammar & Renaudin, Viviane, 2012. "Exergy analysis: An efficient tool for understanding and improving hydrogen production via the steam methane reforming process," Energy Policy, Elsevier, vol. 42(C), pages 392-399.
    7. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Zherui & Wang, Jiangjiang & Feng, Yingsong & Wang, Ruikun & Zhao, Zhenghui & Chen, Hongwei, 2023. "Hydrogen yield prediction for supercritical water gasification based on generative adversarial network data augmentation," Applied Energy, Elsevier, vol. 336(C).
    2. Wijayasekera, Sachindra Chamode & Hewage, Kasun & Hettiaratchi, Patrick & Razi, Faran & Sadiq, Rehan, 2023. "Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis," Energy, Elsevier, vol. 278(PA).
    3. Qi, Xingang & Chen, Yunan & Zhao, Jiuyun & Su, Di & Liu, Fan & Lu, Libo & Jin, Hui & Guo, Liejin, 2023. "Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system," Energy, Elsevier, vol. 278(PA).
    4. Ngamsidhiphongsa, Nathada & Ghoniem, Ahmed F. & Arpornwichanop, Amornchai, 2021. "Detailed kinetic mechanism of devolatilization stage and CFD modeling of downdraft gasifiers using pelletized palm oil empty fruit bunches," Renewable Energy, Elsevier, vol. 179(C), pages 2267-2276.
    5. Hu, Yaping & Lin, Junhao & Liao, Qinxiong & Sun, Shichang & Ma, Rui & Fang, Lin & Liu, Xiangli, 2021. "CO2-assisted catalytic municipal sludge for carbonaceous biofuel via sub- and supercritical water gasification," Energy, Elsevier, vol. 233(C).
    6. Chuayboon, Srirat & Abanades, Stéphane, 2023. "Carbon-neutral synfuel production via continuous solar H2O and CO2 gasification of oil palm empty fruit bunch," Energy, Elsevier, vol. 281(C).
    7. Bei, Lijing & Ge, Zhiwei & Ren, Changyifan & Su, Di & Shang, Fei & Wang, Yu & Guo, Liejin, 2023. "Numerical study on supercritical water partial oxidation of ethanol with auto-thermal operation," Energy, Elsevier, vol. 264(C).
    8. Chen, Yunan & Yi, Lei & Yin, Jiarong & Jin, Hui & Guo, Liejin, 2022. "Sewage sludge gasification in supercritical water with fluidized bed reactor: Reaction and product characteristics," Energy, Elsevier, vol. 239(PB).
    9. Gomes, J.G. & Mitoura, J. & Guirardello, R., 2022. "Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae," Energy, Elsevier, vol. 260(C).
    10. Sandro González-Arias & Abel Zúñiga-Moreno & Ricardo García-Morales & Octavio Elizalde-Solis & Francisco J. Verónico-Sánchez & Sergio O. Flores-Valle, 2021. "Gasification of Psidium guajava L. Waste Using Supercritical Water: Evaluation of Feed Ratio and Moderate Temperatures," Energies, MDPI, vol. 14(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    2. Adnan, Muflih A. & Xiong, Qingang & Muraza, Oki & Hossain, Mohammad M., 2020. "Gasification of wet microalgae to produce H2-rich syngas and electricity: A thermodynamic study considering exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 2195-2205.
    3. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    4. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    5. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    6. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    7. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    8. Standish, B. & Lutge, B., 2013. "Assessing the potential for electricity generation from animal waste biogas on South African farms," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 52(2), March.
    9. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    10. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    11. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    13. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    14. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    15. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    16. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    17. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    18. Hesel, Philipp & Braun, Sebastian & Zimmermann, Florian & Fichtner, Wolf, 2022. "Integrated modelling of European electricity and hydrogen markets," Applied Energy, Elsevier, vol. 328(C).
    19. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    20. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220313876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.