IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220312433.html
   My bibliography  Save this article

Thermodynamic and economic performance of oxy-combustion power plants integrating chemical looping air separation

Author

Listed:
  • Qing, Menglei
  • Jin, Bo
  • Ma, Jinchen
  • Zou, Xixian
  • Wang, Xiaoyu
  • Zheng, Chuguang
  • Zhao, Haibo

Abstract

Oxygen supply from cryogenic air separation unit (ASU) causes high economic cost and energy penalty, which hinders the practicability of oxy-combustion technology. Chemical looping air separation (CLAS) as a thermodynamic-efficient and cost-effective approach can satisfy the oxygen demands for oxy-combustion power plants. To optimize process configuration and identify the effect of recycling position for oxy-combustion power plants integrating CLAS (i.e. OXY-CLAS), the paper focuses on process simulation, thermodynamic analysis and techno-economic evaluation of two typical OXY-CLAS systems. For sastifying the oxygen concentration demand in oxy-combustion, the mixture of recycled flue gas and steam is adopted as the reduction medium in CLAS. For OXY-CCLAS (using cold recycled flue gas as oxygen releasing medium in CLAS), its net efficiency and exergy efficiency are 4.80 and 4.54% points higher than those of oxy-combustion coupled with cryogenic ASU, respectively. Meanwhile, its cost of electricity is reduced about 12.18% whilst its CO2 avoidance cost and CO2 capture cost decrease about 48.14% and 39.34%, respectively. When compared between two OXY-CLAS systems, OXY-WCLAS (utilizing warm recycled flue gas in CLAS) exhibits better performance both on thermodynamic and economic aspects. The exergy efficiency of WCLAS system is 1.29% points higher than that of CCLAS system.

Suggested Citation

  • Qing, Menglei & Jin, Bo & Ma, Jinchen & Zou, Xixian & Wang, Xiaoyu & Zheng, Chuguang & Zhao, Haibo, 2020. "Thermodynamic and economic performance of oxy-combustion power plants integrating chemical looping air separation," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312433
    DOI: 10.1016/j.energy.2020.118136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    2. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    3. Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Fan & Li, Pengfei & Zhang, Tai & Zu, Daohua & Cheng, Pengfei & Liu, Yaowei & Mi, Jianchun & Liu, Zhaohui, 2022. "Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air," Energy, Elsevier, vol. 244(PA).
    2. Kong, Runjuan & Li, Wei & Wang, Haigang & Ren, Qiangqiang, 2024. "Energy efficiency analysis and optimization of a pressurized oxy-fuel circulating fluidized bed combustion system," Energy, Elsevier, vol. 286(C).
    3. Benim, Ali Cemal & Deniz Canal, Cansu & Boke, Yakup Erhan, 2022. "Computational investigation of oxy-combustion of pulverized coal and biomass in a swirl burner," Energy, Elsevier, vol. 238(PC).
    4. Kim, Hyung Woo & Seo, Su Been & Kang, Seo Yeong & Go, Eun Sol & Oh, Seung Seok & Lee, YongWoon & Yang, Won & Lee, See Hoon, 2021. "Effect of flue gas recirculation on efficiency of an indirect supercritical CO2 oxy-fuel circulating fluidized bed power plant," Energy, Elsevier, vol. 227(C).
    5. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    2. Nicole K. Bond & Robert T. Symonds & Robin W. Hughes, 2024. "Pressurized Chemical Looping for Direct Reduced Iron Production: Economics of Carbon Neutral Process Configurations," Energies, MDPI, vol. 17(3), pages 1-20, January.
    3. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    4. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    5. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    6. Wu, Haiqian & Kuang, Min & Wang, Jialin & Zhao, Xiaojuan & Yang, Guohua & Ti, Shuguang & Ding, Jieyi, 2020. "Lower-arch location effect on the flow field, coal combustion, and NOx formation characteristics in a cascade-arch, down-fired furnace," Applied Energy, Elsevier, vol. 268(C).
    7. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    8. Bu, Changsheng & Gómez-Barea, Alberto & Chen, Xiaoping & Leckner, Bo & Liu, Daoyin & Pallarès, David & Lu, Ping, 2016. "Effect of CO2 on oxy-fuel combustion of coal-char particles in a fluidized bed: Modeling and comparison with the conventional mode of combustion," Applied Energy, Elsevier, vol. 177(C), pages 247-259.
    9. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).
    10. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    11. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    12. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    13. Caposciutti, Gianluca & Antonelli, Marco, 2018. "Experimental investigation on air displacement and air excess effect on CO, CO2 and NOx emissions of a small size fixed bed biomass boiler," Renewable Energy, Elsevier, vol. 116(PA), pages 795-804.
    14. Habib, Mohamed A. & Imteyaz, Binash & Nemitallah, Medhat A., 2020. "Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes," Applied Energy, Elsevier, vol. 259(C).
    15. Miroslav Variny, 2022. "Comment on Rogalev et al. Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia. Energies 2021, 14 , 7136," Energies, MDPI, vol. 15(5), pages 1-5, February.
    16. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    17. Gyeong-Min Kim & Jong-Pil Kim & Kevin Yohanes Lisandy & Chung-Hwan Jeon, 2017. "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite," Energies, MDPI, vol. 10(9), pages 1-14, September.
    18. Chowdhury, A.S.M. Arifur & Bugarin, Luz & Badhan, Antara & Choudhuri, Ahsan & Love, Norman, 2016. "Thermodynamic analysis of a directly heated oxyfuel supercritical power system," Applied Energy, Elsevier, vol. 179(C), pages 261-271.
    19. Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
    20. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.