IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220311518.html
   My bibliography  Save this article

Off-design performance characteristics study on ISCC system with solar direct steam generation system

Author

Listed:
  • Duan, Liqiang
  • Wang, Zhen
  • Guo, Yaofei

Abstract

Integrated solar combined cycle (ISCC) system can make full use of solar energy, improves the system thermal efficiency and reduces the fossil fuel consumption. In this paper, the model of ISCC system is established by using the Aspen Plus and Ebsilon. The off-design operation performance characteristics of the gas turbine cycle (GTC), steam turbine cycle (STC) and ISCC system are investigated under different gas turbine off-design operation modes. And the thermal performances of ISCC system under different environmental conditions are also analyzed. The research results show that the impact of the gas turbine off-design operation mode on the STC is more significant than that on the GTC, so in order to obtain the optimum operation performance of the ISCC under off-design conditions, the inlet guided valve (IGV) of air compressor should be adjusted accordingly, which can ensure that the efficiency of STC keeps at a high level. The effect of environmental conditions on the GTC is greater than that on the STC. The influence of the ambient temperature on ISCC system is greater than the influence of DNI on ISCC system. The achievements from this paper will provide valuable references for system design and operation optimization of ISCC system.

Suggested Citation

  • Duan, Liqiang & Wang, Zhen & Guo, Yaofei, 2020. "Off-design performance characteristics study on ISCC system with solar direct steam generation system," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311518
    DOI: 10.1016/j.energy.2020.118044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baghernejad, A. & Yaghoubi, M., 2010. "Exergy analysis of an integrated solar combined cycle system," Renewable Energy, Elsevier, vol. 35(10), pages 2157-2164.
    2. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    3. Kim, T.S. & Hwang, S.H., 2006. "Part load performance analysis of recuperated gas turbines considering engine configuration and operation strategy," Energy, Elsevier, vol. 31(2), pages 260-277.
    4. Yamani, Noureddine & Khellaf, Abdallah & Mohammedi, Kamal & Behar, Omar, 2017. "Assessment of solar thermal tower technology under Algerian climate," Energy, Elsevier, vol. 126(C), pages 444-460.
    5. Zhu, Zhao & Zhang, Da & Mischke, Peggy & Zhang, Xiliang, 2015. "Electricity generation costs of concentrated solar power technologies in China based on operational plants," Energy, Elsevier, vol. 89(C), pages 65-74.
    6. Montes, M.J. & Rovira, A. & Muñoz, M. & Martínez-Val, J.M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors," Applied Energy, Elsevier, vol. 88(9), pages 3228-3238.
    7. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Ting & Geng, Yinan & Tang, Zihui & Li, Fei & Liu, Yachuang & Li, Hao, 2023. "Active disturbance rejection coordinated control for integrated solar combined cycle system considering system inertia difference," Energy, Elsevier, vol. 282(C).
    2. Zhen Wang & Liqiang Duan, 2021. "Thermoeconomic Optimization of Steam Pressure of Heat Recovery Steam Generator in Combined Cycle Gas Turbine under Different Operation Strategies," Energies, MDPI, vol. 14(16), pages 1-20, August.
    3. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    4. Ma, Ning & Bu, Zhengkun & Fu, Yanan & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "An operation strategy and off-design performance for supercritical brayton cycle using CO2-propane mixture in a direct-heated solar power tower plant," Energy, Elsevier, vol. 278(PA).
    5. Shaaban, S., 2024. "Performance optimization of an integrated solar combined cycle for the cogeneration of electricity and fresh water," Renewable Energy, Elsevier, vol. 227(C).
    6. Zuxian Zhang & Liqiang Duan & Zhen Wang & Yujie Ren, 2023. "Integration Optimization of Integrated Solar Combined Cycle (ISCC) System Based on System/Solar Photoelectric Efficiency," Energies, MDPI, vol. 16(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    3. Zhang, Zuxian & Duan, Liqiang & Wang, Zhen & Ren, Yujie, 2022. "General performance evaluation method of integrated solar combined cycle (ISCC) system," Energy, Elsevier, vol. 240(C).
    4. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    5. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    6. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    7. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    8. Turchi, Craig S. & Ma, Zhiwen, 2014. "Co-located gas turbine/solar thermal hybrid designs for power production," Renewable Energy, Elsevier, vol. 64(C), pages 172-179.
    9. Alonso-Montesinos, J. & Monterreal, R. & Fernández-Reche, J. & Ballestrín, J. & Carra, E. & Polo, J. & Barbero, J. & Batlles, F.J. & López, G. & Enrique, R. & Martínez-Durbán, M. & Marzo, A., 2019. "Intra-hour energy potential forecasting in a central solar power plant receiver combining Meteosat images and atmospheric extinction," Energy, Elsevier, vol. 188(C).
    10. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    11. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
    12. Antonio Rovira & Consuelo Sánchez & Manuel Valdés & Ruben Abbas & Rubén Barbero & María José Montes & Marta Muñoz & Javier Muñoz-Antón & Guillermo Ortega & Fernando Varela, 2018. "Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration," Energies, MDPI, vol. 11(5), pages 1-16, April.
    13. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    14. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    15. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    16. Liqiang Duan & Zhen Wang, 2018. "Performance Study of a Novel Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(12), pages 1-22, December.
    17. Shucheng Wang & Zhongguang Fu & Gaoqiang Zhang & Tianqing Zhang, 2018. "Advanced Thermodynamic Analysis Applied to an Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(6), pages 1-16, June.
    18. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    19. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
    20. Li, Yuanyuan & Yang, Yongping, 2015. "Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields," Applied Energy, Elsevier, vol. 160(C), pages 673-680.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.